CSE P 501 — Compilers

LR Parser Construction
Hal Perkins
Spring 2018

Agenda

* LR{O) state construction
 FIRST FOLLOW, and nullable
* Variations: SLR, LR(1), LALR

Ly CSE P 501 Spring 2018

E-2

LR State Machine

* |dea: Build a DFA that recognizes handles

— Language generated by a CFG is generally not
regular, but

— Language of viable prefixes for a CFG is regular

* So a DFA can be used to recognize handles

— LR Parser reduces when DFA accepts a handle

Ly CSE P 501 Spring 2018 E-32

Prefixes, Handles, &c (review)

* IfSisthe start symbol of a grammar G,
— If $=>% g then a is a sentential form of G
— vvis a viable prefix of G if there is some derivation

S=>% oAw=>% —opwand vy isa prefix of ap.

rm

— The occurrence Df [3 in opw is a handle of upw

* Anitem is a marked production (a . at some position
in the right hand side)
—[Az=.XY] [A ::=Xﬁ. Y] [Au=XY.]

A _-:’:)41{J

Ly CSE P 501 Spring 2018 E-4

Building the LR(0) States

* Example grammar

[5ﬂ=5$
S:u=(L)
C S5:=X
La=5
La=L,S

— We add a production S" with the original start symbol
followed by end of file (S)

* We accept if we reach the end of this production
— Question: What language does this grammar generate?

Ly CSE P 501 Spring 2018

E-S

"
™ A
St

Start of LR Parse
5 st

| -

b

LW I b
r-.,b.,'x.---‘

W

* Initially
— Stack is empty
— Input is the right hand side of §’,i.e., S S
— Initial configuration is [S” e 575

— But, since position is just beFore S, we are also just
before anything that can be derived from §

Ly CSE P 501 Spring 2018 E-&

L
PUNEO
wy
o

Initial state

S s o B
nnowony
M~y X —
“n

— | &= 5$*,___——start

Szt L)}
Sri= ‘__:b completion

* Astateis just a set of items

— Start: an initial set of items

— Completion (or closure): additional productions whose left
hand side appears to the right of the dot in some item
already in the state

Ly CSE P 501 Spring 2018 E-¥

i e
Shift Actions (1) g
i:i?:fjﬁ‘
Su=.5%|
Su=.(L)Y—=]Sii=X.[%
5:=.X

J

» To shift past the x, add a new state with appropriate item(s),
including their closure
— In this case, a single item; the closure adds nothing
— This state will lead to a reduction since no further shift is possible

Ly CSE P 501 Spring 2018 E-2

0. §5:=5%
Shift Actions (2) g
e
LS E=lail)
5=.5% i (kg B
“Su=.(L) "L:=.8 ’
J|Sii= . X Su=.(L) 7
5= N 4

* |f we shift past the {, we are at the beginning of L

* The closure adds all productions that start with L, which also
requires adding all productions starting with S

Ly CSE P 501 Spring 2018 E-9

0. §5:=5%

.], Souee .

Goto Actions e
e g

&= .88 | .
Ser= . L LY 157:=5.§]
5:=.X

* Once we reduce S, we’ll pop the rhs from the
stack exposing the first state. Add a goto
transition on S for this.

Ly CSE P 501 Spring 2018 E-10

10

Basic Operations

* Closure (S)
— Adds all items implied by items already in S

* Goto (/, X)

— | is a set of items

— X is a grammar symbol (terminal or non-terminal)

— Goto moves the dot past the symbol X in all
appropriate items in set /

Ly CSE P 501 Spring 2018

E-11

11

Closure Algorithm

* Closure (S) =
repeat
foranyitem [A:=a.BP]inS
for all productions B ::=
add [B :::L:"'i] toS
until S does not change

return S

* Classic example of a fixed-point algorithm

Ly CSE P 501 Spring 2018 E-12

12

Goto Algorithm

* Goto (l, X) =
set new to the empty set
for each item [A ::= o . X Bl in/
add [A ;== o X. B] to new

return Closure (new)

* This may create a new state, or may return an
existing one

Ly CSE P 501 Spring 2018

E-13

13

LR(0) Construction

* First, augment the grammar with an extra
start production §”::= 55

Let T be the set of states
Let £ be the set of edges
* |nitialize T to Closure ([S"::=.55S])

* Initialize E to empty

*

*

Ly CSE P 501 Spring 2018 E-14

14

LR(0) Construction Algorithm

repeat
foreach state /in T
for eachitem [A =0 . X B]in/
Let new be Gotol 1,7()
Add new to T if not present
ﬂaddiﬁ—} new to E if not present
until £ and T do not change in this iteration

* Footnote: For symbol S, we don’t compute goto(l, $): instead, we make
this an accept action. -

Ly CSE P 501 Spring 2018 E-15

15

Example: 5States fO@

e ey
*’"_'::‘.S‘s

Ly CSE P 501 Spring 2018

D g iy
mmuny
M~y X —~
b Uy
i

ol B ol
W

E-16

16

Building the Parse Tables (1)

* Foreach edge /| 2=J

— if Xis a terminal, put sj in column X, row / of the
action table (shift to state j)

— If X is a non-terminal, put gj in column X, row / of

the goto table (go to state j)

Ly CSE P 501 Spring 2018

E-17

17

Building the Parse Tables (2)

* For each state / containing an item
[S” ::=5.5], put accept in column S of row /

* Finally, for any state containing
[A ::=7v.] put action rn (reduce) in every
column of row / in the table, where n is the
production number {not a state number)

Ly CSE P 501 Spring 2018 E-18

18

0. = 5%
Example: Tables for s o
Mt Gt & hkoaw S
\ 4, Li:i=L, S
o of) 5 #1S L
Tlsg o B
o C
]
$3 54 g5 35
g -3 i3 o 3 £?
(¢] ra I —
7 w1 =i = -1 rl
g |s3 s4 94
0] ~H vt 4 4 PL{ \

Ly CSE P 501 Spring 2018 E-19

19

Where Do We Stand?

* We have built the LR{0) state machine and
parser tables

— No lookahead yet

— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and
edges remains the same

* Agrammar is LR(O) if its LR(0) state machine
(equiv. parser tables) has no shift-reduce or
reduce-reduce conflicts.

L CSE P 501 Spring 2018 E-20

20

A Grammar that is not LR(0)

* Build the state machine and parse tables for a

simple expression grammar

Su=ES
Es=T®E
F:=T

Foma

L CSE P 501 Spring 2018

E-21

21

o
e Eu= P+ F
LR(O) Parser for S Fem T
3. 1=y
@ @ X + $ E T
Su=.E$ EFS::=E.$ L] e ga &3
Ei= T +E 2 ace
Eu=.T -|-® 3 | r2 sd4r2 r2
Ti=.x »E:=T.+E
—|Ee=T. 4 55 g G3
@ X 5 r3 r3 r3
¥ +
T @ T & Fd ri r1
Ei=T+.E = State 3 is has two possible
@ En=.T+E actions on +
[Eu=T+E | |EH=.T -
pE= ol Erokes: i = shift 4, or reduce 2
= .. Grammar is not LR(0)
LW CSE P 501 Spring 2018 E-22

22

How can we solve conflicts like this?

* |dea: look at the next symbol after the handle before
deciding whether to reduce

* Easiest: SLR — Simple LR. Reduce only if next input
terminal symbol could follow the nonterminal on the
left of the production in some possible derivation(s)

* More complex: LR and LALR. Store lookahead symbols
in items to keep track of what can follow a particular
instance of a reduction

— LALR used by YACC/Bison/CUP; we won’t examine in detail
— see your favorite compiler book for explanations

L CSE P 501 Spring 2018 E-23

23

SLR Parsers

* |dea: Use information about what can follow a
non-terminal to decide if we should perform a
reduction; don’t reduce if the next input symbol
can’t follow the resulting non-terminal

* We need to be able to compute FOLLOW(A) —the
set of symbols that can follow A in any possible
derivation A
— i.e., tisin FOLLOW(A) if any derivation contains At

— To compute this, we need to compute FIRST(7y) for
strings v that can follow A AvY

Ly CSE P 501 Spring 2018 E-24

24

Calculating FIRST(y)

* Sounds easy... Ify =X YZ, then FIRST(y) is
FIRST(X), right?

— But what if we have the rule X ::= €7

— In that case, FIRST(y) includes anything that can follow
X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
can derive g, FIRST(Z), and if Zcan derive &, ...

— So computing FIRST and FOLLOW involves knowing
FIRST and FOLLOW for other symbols, as well as which
ones can derive €.

L CSE P 501 Spring 2018 E-25

25

FIRST, FOLLOW, and nullable

* nullable(X) is true if X can derive the empty string

* Given a string v of terminals and non-terminals,
FIRST(vv) is the set of terminals that can begin any
strings derived from vy

— For SLR we only need this for single terminal or non-
terminal symbols, not arbitrary strings v

* FOLLOWI(X) is the set of terminals that can
immediately follow X in some derivation

* All three of these are computed together

Ly CSE P 501 Spring 2018 E-26

26

Computing FIRST, FOLLOW, and
nullable (1)

* Initialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals

set FIRST[a] to a for all terminal symbols a

* Repeatedly apply four simple observations to
update these sets
— Stop when there are no further changes

— Another fixed-point algorithm

Ly CSE P 501 Spring 2018 E-27

27

Computing FIRST, FOLLOW, and
nullable (2)

repeat
for each production X:=¥; ¥; ... ¥,
if ¥ ... Y are all nullable (orif k = 0)
set nullable[X] = true
@. foreachi from1ltokand eachj fromi+1ltok
if ¥, ... Y; are all nullable (orifi=1)
add FIRST[Y,] to FIRST[X]
@ if ¥, ... Y areall nullable (orifi=k)
add FOLLOW|[X] to FOLLOWI[Y;]
@ if ¥i,y ... Yiy are all nullable (or if i+1=j)
add FIRST[Y,] to FOLLOW[Y/]
Until FIRST, FOLLOW, and nullable dD not change

@ K Y - i

AT %pm-f
L I.ll'lJCSEF'EDlSpnngEEIIS
G x: - M et
I;EM‘IS?{{DH
@ x: Lr' o U
ﬁa”"“’

E-2&

28

Example

* Grammar

| . Zi=d
L Zu=XYZ
3 Y=g
Y Yu=c
N A=Y
¢ X:=a

nullable FIRST FOLLOW

¢, d o
x »° %D@ aNC

g @
7 "o é),-- C; A
O
iy CSE P 501 Spring 2018 E-29

29

LR(O) Reduce Actions (review)

* In a LR(O0) parser, if a state contains a

reduction, it is unconditional regardless of the

next input symbol
* Algorithm:
Initialize R to empty
foreach state /in T
_for eachitem[A:=a.]in/
IL add (/, A::=a)toR

L CSE P 501 Spring 2018

E-20

30

SLR Construction

* This is identical to LR(0) — states, etc., except for the
calculation of reduce actions

* Algorithm:
Initialize R to empty
for each state /in T
foreachitem[A::=a.]in/
for each terminal a in FOLLOW(A)
add (/,a,A:=o)toR

— i.e., reduce o. to A in state / only on lookahead a

Ly CSE P 501 Spring 2018 E-31

31

LLd
wr +
W = x
oo
vy wl

o= alm

SLR Parser for

m m

[=

| L8]

i =]
I M
a L - - —. A

o
- [
L]
L iy
w7 w7

L L
- +
- x
- . .
nonono

(I T IRy A

b N ™ (R i At N O ¥
L -

A +

I el

I nou |t

o @ul @

iid e

w

w +

w = = = > b

>

nnu __.__. £

i | @

L

T + E.

(6)
E

E-32

L CSE P 501 Spring 2018

32

On To LR(1)

* Many practical grammars are SLR
* LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

Ly CSE P 501 Spring 2018 E-33

33

LR(1) Items

* AnLR(1)item[A:=a.[3, a]is
— A grammar production (A ::= a.3)

— A right hand side position (the dot)
— A lookahead symbol (a)

* |dea: This item indicates that o is the top of
the stack and the next input is derivable
from Pa.

* Full construction: see the book

Ly CSE P 501 Spring 2018 E-34

34

LR(1) Tradeoffs

* LR(1)

— Pro: extremely precise; largest set of grammars

— Con: potentially very large parse tables with many

states

L CSE P 501 Spring 2018

B35

35

LALR(1)

* Variation of LR(1), but merge any two states
that differ only in lookahead

— Example: these two would be merged
A= . al

[A:=x.,Db]

Ly CSE P 501 Spring 2018

E-36

36

LALR(1) vs LR(1)

* LALR(1) tables can have many fewer states than LR(1)

— Somewhat surprising result: will actually have same
number of states as SLR parsers, even though LALR(1) is
more powerful

— After the merge step, acts like SLR parser with “smarter”
FOLLOW sets (can be specific to particular handles)

* LALR(1) may have reduce conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are LALR(1)
(e.g., yacc, bison, CUP, ...)

Ly CSE P 501 Spring 2018 E-37

37

Language Heirarchies

/ unambiguous grammars amb’rguous\
grammars

/ MK) LRK)
diaon LR(l)\

LI C5E P 501 Spring 2018 E-38

38

Coming Attractions

Rest of Parsing...
* LL(k) Parsing — Top-Down
* Recursive Descent Parsers

— What you can do if you want a parser in a hurry
Then...
* AST construction — what do do while you parse!

* Visitor Pattern — how to traverse ASTs for further
processing (type checking, code generation, ...)

L CSE P 501 Spring 2018 E-35

39

