
CSE P 501 – Compilers

Register Allocation
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 P-1

Agenda

• Register allocation constraints
• Local methods
– Faster compile, slower code, but good enough for

lots of things (JITs, …)
• Global allocation – register coloring

UW CSE P 501 Spring 2018 P-2

k

• Intermediate code typically assumes infinite
number of registers

• Real machine has k registers available
• Goals
– Produce correct code that uses k or fewer

registers
– Minimize added loads and stores
– Minimize space needed for spilled values
– Do this efficiently – O(n), O(n log n), maybe O(n2)

UW CSE P 501 Spring 2018 P-3

Register Allocation

• Task
– At each point in the code, pick the values to keep

in registers
– Insert code to move values between registers and

memory
• No additional transformations – scheduling should have

done its job
– But we will usually rerun scheduling if we insert spill code

– Minimize inserted code, both dynamically and
statically

UW CSE P 501 Spring 2018 P-4

Allocation vs Assignment

• Allocation: deciding which values to keep in
registers

• Assignment: choosing specific registers for
values

• Compiler must do both

UW CSE P 501 Spring 2018 P-5

Local Register Allocation

• Apply to basic blocks
• Produces decent register usage inside a block
– But can have inefficiencies at boundaries between

blocks
• Two variations: top-down, bottom-up

UW CSE P 501 Spring 2018 P-6

Top-down Local Allocation
• Principle: keep most heavily used values in

registers
– Priority = # of times register referenced in block

• If more virtual registers than physical,
– Reserve some registers for values allocated to

memory
• Need enough to address and load two operands and store

result
– Other registers dedicated to “hot” values

• But are tied up for entire block with particular value, even if
only needed for part of the block

UW CSE P 501 Spring 2018 P-7

Bottom-up Local Allocation (1)

• Keep a list of available registers (initially all
registers at beginning of block)

• Scan the code
• Allocate a register when one is needed
• Free register as soon as possible
– In x:=y op z, free y and z if they are no longer

needed before allocating x

UW CSE P 501 Spring 2018 P-8

Bottom-up Local Allocation (2)

• If no registers are free when one is needed for
allocation:
– Look at values assigned to registers – find the one

not needed for longest forward stretch in the code
– Insert code to spill the value to memory and insert

code to reload it when needed later
• If a copy already exists in memory, no need to spill

UW CSE P 501 Spring 2018 P-9

Local "bottom-up" Register Allocation, -1
1. ; load v2 from memory
2. ; load v3 from memory
3. v1 = v2 + v3
4. ; load v5, v6 from memory
5. v4 = v5 - v6
6. v7 = v2 - 29
7. ; load v9 from memory
8. v8 = - v9
9. v10 = v6 * v4
10. v11 = v10 - v3

UW CSE P 501 Spring 2018 P-10

• Still in LIR. So lots (too many!) virtual registers required (v2, etc).
• Grey instructions (1,2,4,7) load operands from memory into virtual registers.
• We will ignore these going forward. Focus on mapping virtual to physical.

Local "bottom-up" Register Allocation, 0

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Spring 2018 P-11

v1 1
v2 1
v3 1
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 -
R2 -
R3 -
R4 -

pReg vReg

Local "bottom-up" Register Allocation, 1

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Spring 2018 P-12

v1 1 ¥
v2 1 3
v3 1 6
v4 2
v5 2
v6 2
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3
R3 v1
R4 -

pReg vReg

R3 = R1 + R2

Local "bottom-up" Register Allocation, 2

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Spring 2018 P-13

v1 ¥
v2 3
v3 6
v4 2 5
v5 2 ¥
v6 2 5
v7 3
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v3 v4
R3 v1 v6
R4 v5

pReg vReg

R3 = R1 + R2
; spill R3
; spill R2? - no - still clean
R2 = R4 - R3

Local "bottom-up" Register Allocation, 3

1. v1 = v2 + v3
2. v4 = v5 - v6
3. v7 = v2 - 29
4. v8 = - v9
5. v10 = v6 * v4
6. v11 = v10 - v3

UW CSE P 501 Spring 2018 P-14

v1 ¥
v2 3 ¥
v3 6
v4 5
v5 ¥
v6 5
v7 3 ¥
v8 4
v9 4
v10 5
v11 6

vReg NextRef

R1 v2
R2 v4
R3 v6
R4 v5 v7

pReg vReg

And so on . . .

R3 = R1 + R2
; spill R3
; spill R2? - no!
R2 = R4 - R3
; spill R4? - no!
R4 = R1 - 29

Bottom-Up Allocator

• Invented about once per decade
– Sheldon Best, 1955, for Fortran I
– Laslo Belady, 1965, for analyzing paging

algorithms
– William Harrison, 1975, ECS compiler work
– Chris Fraser, 1989, LCC compiler
– Vincenzo Liberatore, 1997, Rutgers

• Will be reinvented again, no doubt
• Many arguments for optimality of this

UW CSE P 501 Spring 2018 P-15

Global Register Allocation

by Graph Coloring

• How to convert the infinite sequence of

temporary data references, t1, t2, … into

assignments to finite number of actual registers

• Goal: Use available registers with minimum

spilling

• Problem: Minimizing the number of registers is

NP-complete … it is equivalent to chromatic

number – minimum colors needed to color nodes

of a graph so no edge connects same color

UW CSE P 501 Spring 2018 Q-16

Begin With Data Flow Graph

• procedure-wide register allocation
• only live variables require register storage

• two variables(values) interfere when their live
ranges overlap

UW CSE P 501 Spring 2018 Q-17

dataflow analysis: a variable is live at node N if
the value it holds is used on some path further
down the control-flow graph; otherwise it is dead

Live Variable Analysis

UW CSE P 501 Spring 2018 Q-18

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Register Interference Graph

UW CSE P 501 Spring 2018 Q-19

a := read();
b := read();
c := read();
d := a + b*c;

d < 10

e := c+8;
print(c);

f := 10;
e := f + d;
print(f);

print(e);

f

c

e
e

a
b

d

a b

e

dc

f

Graph Coloring
• NP complete problem

• Heuristic: color easy nodes last
– find node N with lowest degree
– remove N from the graph
– color the simplified graph
– set color of N to the first color that is not used by any

of N ’s neighbors
• Basics due to Chaitin (1982), refined by Briggs

(1992)
UW CSE P 501 Spring 2018 Q-20

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Spring 2018 Q-21

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Spring 2018 Q-22

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Spring 2018 Q-23

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

UW CSE P 501 Spring 2018 Q-24

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-25

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-26

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-27

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-28

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-29

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-30

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-31

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-32

a b

e

dc

f

Continued

UW CSE P 501 Spring 2018 Q-33

a b

e

dc

f

a b

e

dc

f

Final Assignment

UW CSE P 501 Spring 2018 Q-34

a b

e

dc

f

a := read();
b := read();
c := read();
d := a + b*c;
if (d < 10) then

e := c+8;
print(c);

else
f := 10;
e := f + d;
print(f);

fi
print(e);

Some Graph Coloring Issues

• May run out of registers
– Solution: insert spill code and reallocate

• Special-purpose and dedicated registers
– Examples: function return register, function

argument registers, registers required for
particular instructions

– Solution: “pre-color” some nodes to force
allocation to a particular register

UW CSE P 501 Spring 2018 Q-35

Global Register Allocation (for real)
• Graph coloring is the standard technique, but
• Nodes are live ranges not variables
• Use control and dataflow (actually SSA) graphs to

derive interference graph
– Edge between (t1,t2) when live ranges t1 and t2 cannot be

assigned to the same register
• Most commonly, t1 and t2 are both live at the same time
• Can also use to express constraints about registers, etc.

• Then color the nodes in the graph
– Two nodes connected by an edge may not have same color

(i.e., cannot allocate to same register)
– If more than k colors are needed, insert spill code

UW CSE P 501 Spring 2018 P-36

Live Ranges (1)

• A live range is the set of definitions and uses
that are related because they flow together
– Every definition can reach every use
– Every use that a definition can reach is in the same

live range

UW CSE P 501 Spring 2018 P-37

Live Ranges (2)

• The idea relies on the notion of liveness, but
not the same as either the set of variables or
set of values
– Every value is part of some live range, even

anonymous temporaries
– Same name may be part of several different live

ranges

UW CSE P 501 Spring 2018 P-38

Live Ranges: Example
1. loadi … ® rfp
2. loadai rfp, 0 ® rw
3. loadi 2 ® r2
4. loadai rfp,xoffset ® rx
5. loadai rfp,yoffset ® ry
6. loadai rfp,zoffset ® rz
7. mult rw, r2 ® rw
8. mult rw, rx ® rw
9. mult rw, ry ® rw
10. mult rw, rz ® rw
11. storeai rw ® rfp, 0

Register Interval
rfp [1,11]
rw [2,7]
rw [7,8]
rw [8,9]
rw [9,10]
rw [10,11]
r2 [3,7]
rx [4,8]
ry [5,9]
rz [6,10]

UW CSE P 501 Spring 2018 P-39

Coloring by Simplification

• Linear-time approximation that generally gives
good results
1. Build: Construct the interference graph
2. Simplify: Color the graph by repeatedly

simplification
3. Spill: If simplify cannot reduce the graph

completely, mark some node for spilling
4. Select: Assign colors to nodes in the graph

UW CSE P 501 Spring 2018 P-40

1. Build

• Construct the interference graph
• Find live ranges – SSA!
– Build SSA form of IR
– Each SSA name is initially a singleton set
– A F-function means form the union of the sets that

includes those names (union-find algorithm)
– Resulting sets represent live ranges
– Either rewrite code to use live range names or keep a

mapping between SSA names and live-range names

UW CSE P 501 Spring 2018 P-41

1. Build

• Use dataflow information to build interference
graph
– Nodes = live ranges
– Add an edge in the graph for each pair of live

ranges that overlap
• But watch copy operations. MOV ri ® rj does not

create interference between ri, rj since they can be the
same register if the ranges do not otherwise interfere

UW CSE P 501 Spring 2018 P-42

2. Simplify

• Heuristic: Assume we have K registers

• Find a node m with fewer than K neighbors

• Remove m from the graph. If the resulting graph
can be colored, then so can the original graph
(the neighbors of m have at most K-1 colors
among them)

• Repeat by removing and pushing on a stack all
nodes with degree less than K

– Each simplification decreases other node degrees –
may make more simplifications possible

UW CSE P 501 Spring 2018 P-43

3. Spill

• If simplify stops because all nodes have
degree ≥ k, mark some node for spilling
– This node is in memory during execution
–\ Spilled node no longer interferes with

remaining nodes, reducing their degree.
– Continue by removing spilled node and push on

the stack (optimistic – hope that spilled node does
not interfere with remaining nodes – Briggs
allocator)

UW CSE P 501 Spring 2018 P-44

3. Spill

• Spill decisions should be based on costs of
spilling different values

• Issues
– Address computation needed for spill
– Cost of memory operation
– Estimated execution frequency

(e.g., inner loops first)

UW CSE P 501 Spring 2018 P-45

4. Select

• Assign nodes to colors in the graph:
– Start with empty graph
– Rebuild original graph by repeatedly adding node

from top of the stack
• (When we do this, there must be a color for it if it didn’t

represent a potential spill – pick a different color from
any adjacent node)

– When a potential spill node is popped it may not
be colorable (neighbors may have k colors
already). This is an actual spill.

UW CSE P 501 Spring 2018 P-46

5. Start Over

• If Select phase cannot color some node (must
be a potential spill node), add loads before
each use and stores after each definition
– Creates new temporaries with tiny live ranges

• Repeat from beginning
– Iterate until Simplify succeeds
– In practice a couple of iterations are enough

UW CSE P 501 Spring 2018 P-47

Coalescing Live Ranges

• Idea: if two live ranges are connected by a
copy operation (MOV ri ® rj) but do not
otherwise interfere, then the live ranges can
be coalesced (combined)
– Rewrite all references to rj to use ri
– Remove the copy instruction

• Then need to fix up interference graph

UW CSE P 501 Spring 2018 P-48

Coalescing Advantages?
• Makes the code smaller, faster (no copy

operation)
• Shrinks set of live ranges
• Reduces the degree of any live range that

interfered with both live ranges ri, rj
• But: coalescing two live ranges can prevent

coalescing of others, so ordering matters
– Best: Coalesce most frequently executed ranges first

(e.g., inner loops)
• Can have a substantial payoff – do it!

UW CSE P 501 Spring 2018 P-49

Overall Structure

UW CSE P 501 Spring 2018 P-50

Find live
ranges

Build int.
graph Coalesce Spill

Costs
Find

Coloring

Insert
Spills

No Spills

More Coalescing Possible

Spills

Complications

• Need to deal with irregularities in the register
set
– Some operations require dedicated registers (idiv

in x86, split address/data registers in M68k and
others), register overlap (AH, AL, AX, EAX, RAX) in
x86 and x86-64

– Register conventions like function results, use of
registers across calls, etc.

• Model by precoloring nodes, adding
constraints in the graph, etc.

UW CSE P 501 Spring 2018 P-51

Graph Representation
• The interference graph representation drives the

time and space requirements for the allocator
(and maybe the compiler)

• Not unknown to have O(5K) nodes and O(1M)
edges

• Dual representation works best
– Triangular bit matrix for efficient access to

interference information
– Vector of adjacency vectors for efficient access to

node neighbors

UW CSE P 501 Spring 2018 P-52

And That’s It

• Modulo all the picky details, that is…

UW CSE P 501 Spring 2018 P-53

