CSE P 501 — Compilers

Introduction to Optimization
Hal Perkins
Spring 2018

Agenda

* Survey some code “optimizations”
(improvements)

— Get a feel for what's possible

* Some organizing concepts
— Basic blocks
— Control-flow and dataflow graph

— Analysis vs. transformation

Ly CSE P 501 Spring 2018

2

Optimizations

* Use added passes to identify inefficiencies in
intermediate or target code

* Replace with equivalent but better sequences
— Equivalent = “has same externally visible behavior”

— Better can mean many things: faster, smaller, less
power, etc.

* “Optimize” overly optimistic: “usually improve” is
generally more accurate

— And “clever” programmers can outwit you!

Ly CSE P 501 Spring 2018 Q-3

An example

x = a[i] + b[2]; m-*'“ tl = *({fp + ioffset);
-] — +t2 = t1 * 4;
_t3 = fp + t2;
—td = *{t3 + aoffset);
—th = 2;
* th = th * 4;
— t7 = fp + t6;
— t8 = *{t7 + boffset) ;
- t9 = t4 + t8;
*(fp + xoffset) = t9;
- t10 = *(fp + xoffset)
. t11 = 5;
— t12 = t10 - +11;
— t13 = *(fp + ioffset);
Sk— t14 = £13 * 4;
— t15 = fp + t14;
- *({t15 + coffset)
LA C5E P 501 Spring 2018

Pt

/7 alil

// bl2]

/! ox
f/ x

i et

=t12; // ecl[i]

An example

tl = *(fp + ioffset),; // i
t2 Bl =5 R S/ was t1 * 4
3 = fp + t2;

x = a[i]l + b[2];
c[il] = x - &

td = *{t3 + aoffset); // alil
ts = 2;
—th =-£h <= 2, // was th * 4

t7 = fp + t6;

t8 = *(t7 + boffset); // b[2]
Strength reduction: shift £9 — t4 + t8;
often cheaper than multiply *(fp + xoffset) = t9; // x = ..
t10 = *(fp + xoffset); // x
t11 = 5;
—t12 = t10 - t11;
t13 = *(fp + ioffset),; // i
t14 = t13 << 2; fSf was t13 * 4

t1l5 = fp + t14;

*(t15 + coffset) = t12; // c[i] := .

Ly CSE P 501 Spring 2018

An example

af[i] + b[2];
x — 5;

x=
c[i] =

Corstant propagation:
replace variables with
known constant values

tl = *(fp + ioffset);

t2 = t1 << 2;

t3 = fp + t2;

td = *{t3 + aocffset)
=t5 = 2;

Eh =3 <@ S/ was th -

t7 = fp + t6;

t8 = *{t7 + boffset)

t9% = t4 + t8;

*(fp + xoffset) = t9;

t10 = *({fp + xoffset);
-~ t11 = 5;

t12 = t10 - 5; // was

t13 = *(fp + ioffset);

t1d = 13 << 2;

t15 = fp + t14;

*{t1lh + coffset) = t12;

Ly CSE P 501 Spring 2018

Pt

/7 alil
2
// bl2]

A x =
r7x

t10 — t11
i et

// eli]

Q-G

An example

t2 = t1 << 2;

t3 = fp + t2;

td = *{t3 + aoffset); // alil
£ =

te = 2 << 2; —

t7T = fp + t6;

x = a[i] + b[2]; tl = *({fp + ioffset) P
c[i] = x - b;

t8 = *({t7 + boffset), // b[2]

Deelld store [orldeladl £9 — t4 + t8;

assignment) elimination: *(fp + xoffset) = t9; // x = ..
remave assignments to t10 = *(fp + xoffset); // x
provably unused variables 11 — &

t12 = £10 — 5;
t13 = *(fp + ioffset),; // i
t14 = t13 << 2
t15 = fp + t14;

*(t1lh + coffset) = t12; // c[i] := ..

Ly CSE P 501 Spring 2018

An example

% = a[i] + b[2]; tl = *(fp + ioffset);, // i
SlAjie w5 ‘ t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[i]
té =8, /J/f was 2 << 2
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]
Corstant folding: statically t9 = t4 + t8;
compiite operatiors *(fp + xoffset) = t9; // x =
with known constant values £10 = *(fp + xoffset); // x

t12 = 10 — 5;

t13 = *(fp + ioffset), // i

t14 = t13 << 2;

t15 = fp + t14;

*(t15 + coffset) = t12; // c[i] :=

Ly CSE P 501 Spring 2018

An example

x = a[i] + b[2]; tl = *(fp + ioffset); // i
N t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // al[i]
t7 = fp + 8, // was fp + t6
t8 = *(t7 + boffset); // b[2]
Corstant propagation then t9 = t4 + t8;
dead store eliminaticn *(fp + xoffset) = t3; // x = .

t10 = *({fp + xoffset),; // x
t12 = £10 - 5,
t13 = *(fp + ioffset); // i
t14 = t13 << 2,
t15 = fp + t14;

*({t1lh + coffset) = t12; // c[i] = .

Ly CSE P 501 Spring 2018

An example

x = alil + b[2]; tl = *(fp + ioffset); // i
¢lil = x - 5, ‘ t2 = tl e 2y
t3 = fp + t2;
td = *(t3 + aoffset),; // al[il
t7 = boffset + 8; // was fp + B8
8 = *(t7 + fp),; J/ b[2] (was tT7 + boffset)
t9 = t4 + t8;
Arithmetic identities: + is *(fp + xoffset) = t9; // x = .
commutative & associative, t10 = *(fp + xoffset); // x
boffzet is typically a known, £12 = £10 — 5 :
compile-time constant (say E13 = *(fp ¢ LoEfsety: £f i
-32), 50 this enables... £14 = t13 << 2

t15 = fp + t1l4;
*(tlh + coffset) = t12; // c[i] := ..

L CSE P 501 Spring 2018 Q-10

10

An example

x = a[i] + b[2]: tl = *{f}_‘) + ioffset) _,.l"j' i
cf[i] = x - 5; t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset); // alil
t7 = -24, //f was boffset
t8 = *(t7 + fp); // bl2]
t% = t4 + t8;
... more corgtant folding, *(fp + xoffset) = t9; // x =
which in turm enables .. £10 = *(fp + xoffset); // x
t12 = +10 — &;
t13 = *(fp + ioffset),; // i
t14 = £t13 << 2
t1l5 = fp + t14;
*({t1lh + coffset) = t12; // c[i] :=

Ly CSE P 501 Spring 2018 -11

11

An example

x = a[i] + b[2];
c[il] = x - &,

More constant propagaticn
and dead store elimination

~tl = *{fp + ioffset), // i
t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset),; // alil
t8 = *(fp - 24), /7 BL2] (was tT+fp)

t9 = t4 + t8;

*(fp + xoffset) = t9; J// x = .
t10 = *(fp + xoffset), // x
t12 = +10 — &;

_t13 = *(fp + ioffset); // i

t14 = t13 << 2;
t15 = fp + t14;
*(t15 + coffset) = t12; // c[i] := .

Ly CSE P 501 Spring 2018 Q-12

12

An example

x = a[i] + b[2]: tl = *{fp + ioffset) J.l"',,l"' i
cf[i] = x - 5; ‘ t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset),; // alil
t8 = *(fp - 24); J7 bl2]
t9 = t4 + t8;
*(fp + xoffset) = t9; J// x = .
Common subexprassion t10 = *(fp + xoffset),; // x
elimination —no need to t12 = 10 — 5;
compute *(fp+ioffset) again [T~st13 - t1. // i (was *(fp + ioffset))
if we know it won't change £14 = £13 << 2

t15 = fp + t14;
*({tl1lh + coffset) = t12; // c[i] = .

Ly CSE P 501 Spring 2018 -13

13

An example

x = a[i] + b[2];
c[i] = x - 5;

Copy propagation: replace
assignment targets with
their values (e.g., replace
£13 with t1)

tl =

*(fp + ioffset); // i

t2 t1l <= 2;

t3 = fp + t2;

td = *(t3 + aoffset),; // alil
t8 = *(fp - 24); /7 bI2]
t9 = t4 + t8;

*(fp + xoffset) = t9; J// x = .
t10 = t9, // x (was *(fp +
t12 = £10 — &;

t13 = t1; T
‘Yt = 1)1 << 2; Jf wams %13 << 2
t15 = fp + t14;

*(t1lh + coffset) = t12; // c[i]

Ly CSE P 501 Spring 2018

xoffset))

Q-14

14

An example

x = a[i] + b[2];
c[i] = x - 5;

Common subexprassion
alimination

tl = *{fp + ioffset), // i

t2 = t1 << 2;
t3 = fp + t2;

td = *({t3 + aoffset), // alil

t8 = *(fp - 24);
t9 = t4 + t8;

*(fp + xoffset) = t9; J// x = .

t£10 = t9;
t12 = £10 — 5,
t13 = t1;
t14 = t2,

t1h = fp + t14;
*(t1h + coffset)

Ly CSE P 501 Spring 2018

// bl2]

/ox

A d
J/ was t1 << 2

= +t12; // c[i]

-15

15

An example

x = a[i] + b[2]: tl = *{fp + ioffset) _,.l"j' i

t2 = 11 << 2;

3 = fp + t2;

td = *(t3 + aoffset),; [/ alil

t8 = *(fp - 24); Jf bl2]

t9 = t4 + t8;

*(fp + xoffset) = t9; J// x = .

c[il] = x - &,

More copy propadation t10 = t9; Ix
\t.lz t9 — 5, // was t10 - 5

t13 = t1; o e

t14 = t2;

t15 = fp + t14;

*({tl1lh + coffset) = t12; // c[i] = .

Ly CSE P 501 Spring 2018 -16

16

An example

x = a[i] + b[2]; tl = *{fp + ioffset),; // i
SELTS o= £ 12 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset),; // alil
t8 = *(fp - 24); /7 bI2]
t9 = t4 + t87;
*(fp + xoffset) = t9,; /J/ x =
Maore copy propagation t10 = t9; // x
t12 = t9 - 5;
t13 = t1; /i
t1d = t2;

t15 = fp + t2; // was fp + tl4
*({t1lh + coffset) = t12; // c[i] = .

Ly CSE P 501 Spring 2018 Q-17

17

An example

// bl2]

x = a[i] + b[2]; tl = *{fp + ioffset),; // i
SIS %= & t2 = t1 << 2;
t3 = fp + t2;
td = *(t3 + aoffset),; // alil
t8 = *(fp - 24);
t9 = t4 + t8;
*(fp + xoffset) = t9; J// x = .
Dead assignment iy Bt Y AEY
elimination t12 = t9 - 5;
t13 = t1,; ff 1
t1d = t2;

t15 = fp + t2;
*(t1h + coffset)

Ly CSE P 501 Spring 2018

= t12,; // c[i]

-18

18

An example

x = a[i] + bI[2]1; tl
t2 =

t3 =
td
t8 =
t9 =
* (fp

c¢l[i] = x - 5;

t12 =

*(fp + ioffset); // i

£l =< D
fp + t2;

*(fp - 24);
td + t8;

+ xoffset)
t9 — 5;

t15 = fp + t2;
*(t1lh + coffset)

= *(t3 + aoffset),; [/ alil

// bl2]

=+t9; /J/ x =

=t12; f/ eli]

« Final: 3 loads (i, a[i], b[2]), 2 stores (x, c[i]), 5 register-only moves, 9 +/~, 1 shift
« (riginal: 5 loads, 2 stores, 10 register-only moves, 12 +/~, 3+

« Optimizer note: we usually leave assignment of actual registers to later stage of
the compiler and assume as mary “pseudo registers” as we need here

Ly CSE P 501 Spring 2018

-19

19

Kinds of optimizations

* peephole: look at adjacent instructions

* |ocal: look at individual basic blocks
— straight-line sequence of statements

* intraprocedural: look at whole procedure
— Commonly called “global”

* interprocedural: look across procedures

— “whole program” analysis
— gcc’s “link time optimization” is a version of this

* Larger scope => usually better optimization but more
cost and complexity
— Analysis is often less precise because of more possibilities

Ly CSE P 501 Spring 2018 Q-20

20

Peephole Optimization

» After target code generation, look at adjacent
instructions (a “peephole” on the code
stream)

— try to replace adjacent instructions with
something faster

" movqg %r9,16 (%rsp) movg %r9 ,16 (%rsp)
movg 16 (%rsp) , *rl2 [movg %r9 , %rl2

— Jump chaining can also be considered a form of
peephole optimization (removing jump to jump)

Ly CSE P 501 Spring 2018 21

21

More Examples

[subqg $8,%rax movqg %r2,-8(%rax)
movqg *r2,0(%rax)
%rax overwritten

addg $1,%rax
movqg *rax,lé (xrsp)
=rax overwritten

[movq 16 (%rsp),%rax |incq 16 (%rsp))

* One way to do complex instruction selection

Ly CSE P 501 Spring 2018

Q-22

22

Algebraic Simplification

-

i

prd

M N M KN N KM

=3

I % % % x

(x + y)

constant folding

+

"
*
*
*
)

L
'

—

« ¢ 8 4 13

-
i

=
—

-
i

&

&

&

-

x
x
b
X
b4

[

strength reduction”

<€ 1l or gz = x + X
<< 3
>> 3 (only i1f x>=0 known)

= x (maybe; not doubles,

might change int overflow)

* Can be done at many levels from peephole onup

* Why do these examples happen?

— Often created during conversion to lower-level IR, by other optimizations, code gen, etc.

Ly CSE P 501 Spring 2018 Q-23

23

Local Optimizations

* Analysis and optimizations within a basic block

* Basic block: straight-line sequence of
statements

— no control flow into or out of middle of sequence
* Better than peephole
* Not too hard to implement with reasonable IR

* Machine-independent, if done on IR

L CSE P 501 Spring 2018 24

24

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding
— Code; unoptimized intermediate code:

__|eount = 10; count = 10;
// count not changed tl = count;
X = _count * 5; T
3}=§‘“3; £t =ft1 “* £2;
x = 17; ¥ = £3;
N td = x;
j o B
t6 = exp(td , t5);
y = t6;
X:= 7

Ly CSE P 501 Spring 2018

Q-25

25

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable

reassigned)

* Can enable more constant folding
— Code; constant propagation:

count = 10; count = 10;
// count not changed tl = 10;
X = count * 5; =0
vy =x " 3; t3 = 10 * t2;
x = 17; x = t3;
td = x;
o B
t6 = exp(t4,3)
y = t6;
X =17

// ep count

/] op tl

// cp t5

Ly CSE P 501 Spring 2018

Q-26

26

Local Constant Propagation

If variable assigned a constant, replace downstream
uses of the variable with constant (until variable

reassigned)

Can enable more constant folding

— Code; constant folding:

count = 10;
// count not changed

x
Y
x

count * 5;
x ~ 3;
7;

[/ 10*t2

Ly CSE P 501 Spring 2018

Q-27

27

Local Constant Propagation

If variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

Can enable more constant folding
— Code; repropagated intermediate code

x
Y
x

count = 10; count = 10;

// count not changed tl
count * 5; t2 97
x ~ 3; t3 50;
7 o x = 50 // cp t3
t4 50; /] ep x
t5 -
t6 exp (50 ,3); // cp t4
y = t6;
b4 i

10;

Ly CSE P 501 Spring 2018 -28

28

Local Constant Propagation

* |f variable assigned a constant, replace downstream
uses of the variable with constant (until variable
reassigned)

* Can enable more constant folding
— Code: refold intermediate code

count = 10; count = 10;
// count not changed tl = 10;

X = count * 5; R

y=x * 3; t3 = 50;

x = 7; x = 50;
td = 50;
o B
t6 = 125000; // £ 503
y = t6;
X:= 1

Ly CSE P 501 Spring 2018

Q-29

29

Local Constant Propagation

If variable assigned a constant, replace downstream

uses of the variable with constant (until variable

reassigned)

Can enable more constant folding

— Code; repropagated intermediate code

count = 10;
// count not changed
count * 5;
x ~ 3;
T

x
Y
x

count = 10;
tl = 10;
R

£33 =50

x = 50;

td = 50;

ol B

t6 = 125000
y = 125000;
X:= 1

// cp té

Ly CSE P 501 Spring 2018

-30

Local Dead Assignment Elimination

» |fl.h.s. of assignment never referenced again before being

overwritten, then can delete assignment

— Why would this happen?

Clean-up after previous optimizations, often

count = 10;

// count not changed
count * 5;

x * 3;

1;

Wk oK
i

count = 10;
tl = 10;
t2=0;

t3 = 50;

x = 50;

td = 50;

ol S

t6 = 125000
y = 125000;
X:= 1

L CSE P 501 Spring 2018

31

31

Local Dead Assignment Elimination

» |fl.h.s. of assignment never referenced again before being
overwritten, then can delete assignment

— Why would this happen?

Clean-up after previous optimizations, often

count = 10;

// count not changed
count * 5;

x * 3;

1;

Wk oK
i

count = 10;
£l = 10;
£7 - 5.

td =50
®—=D50-

£d = 50
S

£6 = 125000

25000;

r

v 1
b4)

L CSE P 501 Spring 2018

32

32

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won't have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
to

*(fp
tl *
fp +
* (£3
*(fp
t5 *
fp +
* (t7

= t4 +

+ ioffset);
4;
tZ;
+ aoffset);
+ ioffset) ;
4;
t6;
+ boffset);
t8;

Ly CSE P 501 Spring 2018

-33

33

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate

them if result won't have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
to

*(fp
tl *
fp +
* (£3
£l;

t5 *
fp +
*(t7

= t4 +

+ ioffset);
4;
tZ;
+ aoffset);
// CSE
4;
t6;
+ boffset);
t8;

Ly CSE P 501 Spring 2018

Q-34

34

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won't have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
to

*(fp
tl *
fp +
* (£3
£

tl *
fp +
*(t7

= t4 +

+ ioffset);
4;
tZ;
+ aoffset);

4; [f7i C®
t6;

+ boffset);
t8;

Ly CSE P 501 Spring 2018

-35

35

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won't have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl =

t2
t3
t4
t5
t6
t7
t8
to

*(fp
tl *
fp +
*(£3
£

¥ ¥

fp +
*(t7

= t4 +

+ ioffset);
4;
tZ;
+ aoffset);

// CSE
t2; [F OO
+ boffset);
t8;

Ly CSE P 501 Spring 2018

-36

36

Local Common Subexpression

Elimination

* Look for repetitions of the same computation. Eliminate
them if result won't have changed and no side effects

— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

a[i] + b[i]

tl
t2
t3
t4
t5
t6
t7
t8
to

*(fp
tl *
fp +
* (3
£
) vl
t3;
*(t3
t4 +

+ ioffset);
4;
tZ;
+ aoffset);

// CSE
+ boffset); iz
t8;

Ly CSE P 501 Spring 2018

Q-37

37

Local Common Subexpression
Elimination

* Look for repetitions of the same computation. Eliminate
them if result won't have changed and no side effects
— Avoid repeated calculation and eliminates redundant loads

* |dea: walk through basic block keeping track of available expressions

tl = *(fp + ioffset);
. ali]l + b[i] ... t2 tl * 4;

t3 fp + t2;

td = *(t3 + aoffset);
+5—=—+%1+ // DAE
£6—=%2; [/ DAE
+7=—+%3+ // DAE

tB = *(t3 + boffset);
t9 = t4 + t8;

Ly CSE P 501 Spring 2018 -38

38

Intraprocedural optimizations

* Enlarge scope of analysis to whole procedure
— more opportunities for optimization
— have to deal with branches, merges, and loops

* Can do constant propagation, common
subexpression elimination, etc. at “global”
level

* Can do new things, e.g. loop optimizations

* Optimizing compilers usually work at this level
(-02)

L CSE P 501 Spring 2018 -39

39

Code Motion

* Goal: move loop-invariant calculations out of loops

* (Can do at source level or at intermediate code level

for (1 =0; i < 10; i = i+l) {
a[i] = a[i] + b[]]: iy
z =z + 10000; f?,ggﬁé@
} =" c2n ze 20+
tl = b[]].
t2 = 10000;
for (1 = 0; 1 < 10; 1 = 1+1) {
al[i] = a[i] + t1;
z =z + t2; e
}

Q-40

40

Code Motion at IL

L

0; 1 < 10; i = i+1) {
b[3]:

for (i
alil

}

*(fp + ioffset) = 0;

label top;

rt0 = *(fp + ioffset);
iffalse (t0 < 10) goto done;

tl = *(fp + Jjoffset);
t2 = t1 * 4;
t3 = fp + t2;
~td4d = *(t3 + boffset);
| 5 = *(fp + ioffset);
 t6 = t5 * 4;
- t7 = fp + t6;

| *{t7 + aoffset) = t4;
| t9 = *(fp + ioffset);
L 10 = 9 + 1;
*(fp + ioffset) = t10;
goto top:
label done;

Ly CSE P 501 Spring 2018

Q-41

41

Code Motion at IL

0; i < 10; i = i+1l) |
b[i]:

for (i
al[i]

}
t1ll fp + ioffset; tl3
[tlz2 fp + joffset; tl4
*(fp + ioffset) = 0;
label top;

t0 = *tll;

iffalse (t0 < 10) goto done;

tl = *£12;

t2 = t1 * 4;

fp + acffset;
fp + boffset

t

*(tld + t2);
*t1ll;
t5 * 4;
£13;
*(tl3 + t6) = t4;
t9 = *¢£11;
t1l0 = t9 + 1;
*tll = t10;
goto top:;
label done; e

o o o ot
1O N
munnn

42

Loop Induction Variable Elimination

* Aspecial and common case of loop-based strength reduction
* For-loop index is induction variable

— incremented each time around loop

— offsets & pointers calculated from it
* |fused only to index arrays, can rewrite with pointers

— compute initial offsets/pointers before loop

— increment offsets/pointers each time around loop

— no expensive scaling in loop

— can then do loop-invariant code motion

for '[i.=n5¢_:':_,{1ﬂ;i_._=._-—':"—il} {

afil] = ali]l + =x;

] B5= e

=> transformed to

for (p = &a[0]; p < &a[l0]; p = p+4) |
—*p = *p + x;

}

Ly CSE P 501 Spring 2018 -43

43

Interprocedural Optimization

* Expand scope of analysis to procedures calling
each other

* Can do local & intraprocedural optimizations
at larger scope

* Can do new optimizations, e.g. inlining

Ly CSE P 501 Spring 2018 (e

44

Inlining: replace call with body

* Replace procedure call with body of called procedure

*+ Source:
- —final double pi = 3.1415927;
double circle_ area(double radius) ({
[ﬂ return pi * (radius * radius) ;

}

e e —

—double r

5.0;

— double a = circle area(r);
. . i '“‘_"_"H-\-:_._.—
+ After inlining:

— double r

5.0;

double a = pi * r * r:

* (Then what? Constant propagation/folding)

Ly CSE P 501 Spring 2018 -45

45

Data Structures for Optimizations

* Need to represent control and data flow

Control flow graph (CFG) captures flow of control
— nodes are IL statements, or whole basic blocks

— edges represent (all possible) control flow

— node with multiple successors = branch/switch

— node with multiple predecessors = merge

— loop in graph = loop

Data flow graph (DFG) captures flow of data, e.g. def/use
chains:

— nodes are def(inition)s and uses

— edge from def to use

— a def can reach multiple uses

— a use can have multiple reaching defs (different control flow
paths, possible aliasing, etc.)

SSA: another widely used way of linking defs and uses
LW CSE P 301 Sring 2018 45

]

L]

t.__\
*

46

Analysis and Transformation

Each optimization is made up of
— some number of analyses
— followed by a transformation

* Analyze CFG and/or DFG by propagating info forward
or backward along CFG and/or DFG edges
— merges in graph require combining info
— loops in graph require iterative approximation

* Perform (improving) transformations based on info
computed

* Analysis must be conservative/safe/sound so that
transformations preserve program behavior

Ly CSE P 501 Spring 2018 Q-47

47

Summary

* Optimizations organized as collections of passes, each
rewriting IL in place into (hopefully) better version

* Each pass does analysis to determine what is possible,
followed by transformation(s) that (hopefully) improve
the program

— Sometimes “analysis-only” passes are helpful

— Often redo analysis/transformations again to take
advantage of possibilities revealed by previous changes

* Presence of optimizations makes other parts of
compiler (e.g. intermediate and target code
generation) easier to write

L CSE P 501 Spring 2018 48

48

