CSE P 501 — Compilers

Loops
Hal Perkins

Spring 2018

Agenda

* Loop optimizations

| —Dominators — discovering loops
a . : .
— Loop invariant calculations

L — Loop transformations
* A quick look at some memory hierarchy issues

* Largely based on material in Appel ch. 18, 21;
similar material in other books

L CSE P 501 Spring 2018 -2

Loops

Much of he execution time of programs is spent
here

". worth considerable effort to make loops go
faster

. want to figure out how to recognize loops and
figure out how to “improve” them

L CSE P 501 Spring 2018 -3

What’s a Loop?

* In source code, aloop is the set of statements

in the body of a for/while construct

* But, in a language that permits free use of
GOTOs, how do we recognize a loop?

* In a control-flow-graph {node = basic-block,
arc = flow-of-control), how do we recognize a
loop?

L CSE P 501 Spring 2018

-4

Any Loops in this Code?

124
~ goto L8
it
if (1 < N) goto L9

LWy CSE P 501 Spring 2018

Anyone recognize or
guess the algorithm?

L5

Any Loops in this Flowgraph?

Ly CSE P 501 Spring 2018

LG

LooP in a Flowgraph: Intuition
/ Header

Node

» Cluster of nodes, such that:

+ There's one node called the "header”

Y M

L CSE P 501 Spring 2018

-7

What’s a Loop?

et

* In a control flow graph, a loop is a set of nodes
S such that:

— S includes a header node h

— From any node in S there is a path of directed
edges leading to h

— There is a path from h to any node in S

— There is no edge from any node outside S to any
node in S other than h

Ly CSE P 501 Spring 2018 -3

Entries and Exits

* Inaloop

— An entry node is one with some predecessor
outside the loop

— An exit hode is one that has a successor outside
the loop

* Corollary: A loop may have multiple exit
nodes, but only one entry node

Ly CSE P 501 Spring 2018 g

Loop Terminology

S #

>

head

[\

back
edge

tail

preheader
entry edge

L CSE P 501 Spring 2018

loop

exit edge

%

-10

10

Reducible Flow Graphs

* |na reducible flow graph, any two loops are
either nested or disjoint

* Roughly, to discover if a flow graph is reducible,
repeatedly delete edges and collapse together &
pairs of nodes (x,y) where x is the only @
predecessor of y o

* |f the graph can be reduced to a single node it is
reducible

— Caution: this is the “powerpoint” version of the
definition — see a good compiler book for the careful

details

Ly CSE P 501 Spring 2018 U-11

11

Example: Is this Reducible?

Example: Is this Reducible?
| Y

Ly CSE P 501 Spring 2018 L-13

13

Reducible Flow Graphs in Practice

* Common control-flow constructs yield
reducible flow graphs

— if-then[-else], while, do, for, break(!)
* A C function without goto will always be
reducible

* Many dataflow analysis algorithms are very
efficient on reducible graphs, but...

* We don’t need to assume reducible control-
flow graphs to handle loops

Ly CSE P 501 Spring 2018 L-14

14

Finding Loops in Flow Graphs

* We use dominators for this C‘b\
* Recall / \@

— Every control flow graph has a unique start "
node s,

— Node x dominates node y if every path from s,
to y must go through x

— A node x dominates itself

Ly CSE P 501 Spring 2018 LU-15

15

Calculating Dominator Sets

* D[n] is the set of nodes that dominate n
— Dlsp] ={so }
—D[n] ={n}w (Mpepredin] D[p])
* Set up an iterative analysis as usual to solve
this
— Except initially each D[n] must be all nodes in the

graph — updates make these sets smaller if
changed

Ly CSE P 501 Spring 2018 L-16

16

Example

L

Lny CSE P 501 Spring 2018 L-17

17

Immediate Dominators

* Every node n has a single immediate dominator
idom(n)
— idom(n) dominates n
— idom(n) differs from n —i.e., strictly dominates

— idom(n) does not dominate any other strict
dominator of n
* i.e., strictly dominates and is nearest dominator

* Fact (er, theorem): If a dominates n and
b dominates n, then either a dominates b or b

dominates a
. idom(n) is unique

Ly CSE P 501 Spring 2018 L-18

18

Dominator Tree

* Adominator tree is constructed from a
flowgraph by drawing an edge form every
node in n to idom(n)

— This will be a tree. Why?

Ly CSE P 501 Spring 2018

u-19

19

Back Edges & Loops " C@%

* Aflow graph edge from a node n to a node h
that dominates n is a back edge

* For every back edge there is a corresponding
subgraph of the flow graph that is a loop

Ly CSE P 501 Spring 2018 L-20

20

Natural Loops

+ If h dominates n and n->h is a back edge, then
the natural loop of that back edge is the set of

nodes X such that

— h dominates x
— There is a path from x to n not containing h

* his the header of this loop

* Standard loop optimizations can cope with
loops whether they are natural or not

L CSE P 501 Spring 2018 -1

21

Inner Loops

* Inner loops are more important for
optimization because most execution time is

expected to be spent there
* |f two loops share a header, it is hard to tell

which one is “inner”

— Common way to handle this is to merge natural
loops with the same header

Ly CSE P 501 Spring 2018 L-22

22

Inner (nested) loops

* Suppose
— A and B are loops with headers aand b
—a=b
—bisin A

* Then

— The nodes of B are a proper subset of A

— Bis nested in A, or B is the inner loop

Ly CSE P 501 Spring 2018 L-23

23

Loop-Nest Tree

* Given a flow graph G
1. Compute the dominators of G
2. Construct the dominator tree

3. Find the natural loops (thus all loop-header

i, nodes)
al\
9 Y4, Foreachloop header h, merge all natural loops

of h into a single loop: loop|[h]

5. Construct a tree of loop headers s.t. h; is above
h, if h,is in loop[h,] "

Ly CSE P 501 Spring 2018 G_IJ L-24

24

Loop-Nest Tree details

* Leaves of this tree are the innermost loops

* Need to put all non-loop nodes somewhere

— Convention: lump these into the root of the loop-

nest tree

Ly CSE P 501 Spring 2018

L-25

25

Loop Preheader

* Often we need a place to park code right
before the beginning of a loop

* Easy if there is a single node precedmg the

loop header h
\\

— But this isn’t the case in general " '|
; 1
* Soinsert a preheader node p Q__,/

— Include an edge p->h

-

— Change all edges x->h to be x->p

Ly CSE P 501 Spring 2018 L-26

26

Loop-Invariant Computations

* |ldea: If x :==al op a2 always does the same
thing each time around the loop, we’d like to
hoist it and do it once outside the loop

* But can’t always tell if al and a2 will have the
same value
— Need a conservative (safe) approximation

Ly CSE P 501 Spring 2018 27

27

Loop-Invariant Computations

* d:x:=al op a2isloop-invariant it for each a;

— @, is a constant, or

— All the definitions of a, that reach d are outside the
loop, or

— Only one definition of a, reaches d, and that definition
Is loop invariant

* Use this to build an iterative algorithm

— Base cases: constants and operands defined outside
the loop

— Then: repeatedly find definitions with loop-invariant
operands

Ly CSE P 501 Spring 2018 L-28

28

Hoisting

* Assume that d: x:=al op a2 is loop invariant.
We can hoist it to the loop preheader if

— d dominates all loop exits where x is live-out, and
— There is only one definition of x in the loop, and

— X is not live-out of the loop preheader

* Need to modify this if al op a2 could have
side effects or raise an exception

L CSE P 501 Spring 2018 -

29

Hoisting: Possible?

 Example 1

.
~——lifi<ngoto L1
L2:éﬁcj =1

* Example 2
L0: =0
.«"/f Llr“iff iE‘-{j goto L2

X

i:=i+1

- d: t=aodph
M[i] :='t

Ly CSE P 501 Spring 2018 L-30

30

Hoisting: Possible?

* Example 3 * Example 4
LOZt =1) LO@__: 0
Ll:1:=1+ 1\-;;-3*-*‘_%\ ;

f"’f L1: M[J’]":':r't'}

;,b \I". ':".H | : %
I'| Y @Y
|

=aopb
_ | MIi] :%\'5
| ifi <ngoto L1
ifi<ngoto L1 e L2: %=1
LZ: X =1

iy CSE P 501 Spring 2018

L-31

31

Induction Variables

* Suppose inside a loop

— Variableiis m{:remented or decremented

— Variable j is set t{] | (i{j)\/here c and d are loop-
invariant

* Then we can calculate j’s value without using i

— Whenever i is incremented by a,
increment j by a*c

L CSE P 501 Spring 2018 -3

32

Example

* Original
s:=0
i:=0
L1: ifi=ngoto L2
J :H’*‘d
(= jra

=IJ

S 1= S4X

=il

L CSE P 501 Spring 2018

* To optimize, do...

Induction-variable analysis
to discoveriandj are
related induction variables

Strength reduction to
replace *4 with an addition

Induction-variable
elimination to replacei=n

Assorted copy propagation

L33

33

Result

* Original * Transformed
s:=0 5:=0
i:=0 k'=a

L1: if i= n goto L2 b=n*4
j=i*4 c=a+b
K:=j+a L1: if k" =2 cgoto L2
x := MJ[k] X:= M[k’]

5 i= 54X S =X

=i+l K':=k'+4

goto L1 goto L1
L2 L2

Details are somewhat messy — see your favorite compiler book

Ly CSE P 501 Spring 2018 L-34

34

Basic and Derived Induction Variables

* Variable iis a basic induction variable in loop L
with header h if the only definitions of i in L have
the form i:=i=c where c is loop invariant

* Variable k is a derived induction variable in L if:

— There is only one definition of k in L of the form k:=j*c
or k:=j+d where j is an induction variable and c, d are
loop-invariant, and

— if j is a derived variable in the family of i, then:

* The only definition of j that reaches k is the one in the loop,
and

* thereis no definition of i on any path between the definition
of j and the definition of k

Ly CSE P 501 Spring 2018 L35

35

Optimizating Induction Variables

* Strength reduction: if a derived induction variable
is defined with j:=i*c, try to replace it with an
addition inside the loop

* Elimination: after strength reduction some
induction variables are not used or are only
compared to loop-invariant variables; delete
them

* Rewrite comparisons: If a variable is used only in
comparisons against loop-invariant variables and
in its own definition, modify the comparison to
use a related induction variable

L CSE P 501 Spring 2018 U-36

36

Loop Unrolling

* If the body of a loop is small, much of the time

is spent in the “increment and test” code

* |dea: reduce overhead by unrolling — put two

or more copies of the loop body inside the

loop

L CSE P 501 Spring 2018

L-37

37

Loop Unrolling

* Basic idea: Given loop L with header node h
and back edges s.->h

1. Copy the nodes to make loop L' with header h’
and back edges s.’->h’

2. Change all back edges in L from s->h to s->h’

3. Change all back edges in L' from s.->h’ to s,’->h

Ly CSE P 501 Spring 2018 L-38

38

Unrolling Algorithm Results

* Before « After
L1: x := M([i] L1: x := M|i]
S5:=S+X §:=5+X
1:=1+4 I:=i+4
if i<n goto L1 else L2 if i<n goto L1’ else L2

L2: L1":x := M[i]
5:=5+X

I:=1+4

ifi<n goto L1 else L2
L2:
s CSE P 501 Spring 2018 1J-39

39

Hmmmm....

* Not so great — just code bloat

* But: use induction variables and various loop
transformations to clean up

Ly CSE P 501 Spring 2018 L-40

40

After Some Optimizations

* Before « After
L1: x := M([i] L1: x := M|i]
S5:=S+X §:=5+X
i=i+4 X := M[i+4]
if i<n goto L1’ else L2 $:=s+X
L1 :x := MIi] i:=i+8
S:=5+X if i<n goto L1 else L2
l:=1+4 L2
if i<n goto L1 else L2
L2:
s CSE P 501 Spring 2018 J-41

41

Still Broken...

* But in a different, better(?) way

* Good code, but only correct if original number
of loop iterations was even

* Fix: add an epilogue to handle the “odd”
leftover iteration

L CSE P 501 Spring 2018 42

42

Fixed

» Before
L1: x := M[i]
SI=S+X
X := M[i+4]
SI=S+X
i:=1+8

if i<n goto L1 else L2
.2

« After

if i<n-8 goto L1 else L2
L1: x := MI[i]

§:=5+ X

X 1= M[i+4]

§5:=5+ X

i:=i+8

if i<n-8 goto L1 else L2
L2: x := M[i]

§ 1= S+X

| = i+4

ifi<ngotolL2else L3
L3:

Ly CSE P 501 Spring 2018

L-43

43

Postscript

* This example only unrolls the loop by a factor

of 2

* More typically, unroll by a factor of K

— Then need an epilogue that is a loop like the
original that iterates up to K-1 times

L CSE P 501 Spring 2018 L-44

44

Memory Heirarchies

* One of the great triumphs of computer design
* Effectis a large, fast memory

* Reality is a series of progressively larger, slower,
cheaper stores, with frequently accessed data
automatically staged to faster storage (cache,
main storage, disk)

* Programmer/compiler typically treats it as one
large store. (but not always the best idea)

* Hardware maintains cache coherency — most of
the time

Ly CSE P 501 Spring 2018 L-45

45

Intel Haswell Caches

Core Core

L1 = 64 KB per core

L2 = 256 KB per core

L3 = 2-8 MB shared

45

46

Just How Slow is Operand Access?

* Instruction ~5 per cycle

* Register 1cycle

Lny CSE P 501 Spring 2018 L-47

47

Implications

* CPU speed increases have out-paced increases
INn memory access times

* Memory access now often determines overall
execution speed

* “Instruction count” is not the only
performance metric for optimization

Ly CSE P 501 Spring 2018 L-48

48

Memory Issues

* Byte load/store is often slower than whole
(physical) word load/store

— Unaligned access is often extremely slow

* Temporal locality: accesses to recently accessed
data will usually find it in the (fast) cache

* Spatial locality: accesses to data near recently
used data will usually be fast
— “near” =in the same cache block

* But — alternating accesses to blocks that map to
the same cache block will cause thrashing

Ly CSE P 501 Spring 2018 L-49

49

Data Alignment

* Data objects (structs) often are similar in size
to a cache block (= 64 bytes)

.. Better if objects don’t span blocks

* Some strategies

— Allocate objects sequentially; bump to next block
boundary if useful

— Allocate objects of same common size in separate
pools (all size-2, size-4, etc.)

* Tradeoff: speed for some wasted space

Ly CSE P 501 Spring 2018 L-50

50

Instruction Alignment

* Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

* Branch targets (particularly loops) may be faster if they
start on a cache line boundary

— Often see multi-byte nops in optimized code as padding to
align loop headers

— How much depends on architecture (typical 16 or 32 bytes)

* Try to move infrequent code (startup, exceptions) away
from hot code

* Optimizing compiler can perform basic-block ordering

L CSE P 501 Spring 2018 L-51

51

Loop Interchange

* Watch for bad cache patterns in inner loops;
rearrange if possible

* Example
for (i=0;i<m; i++)
for (j=0;j<n; j++)
for (k =0; k< p; k++)
ali,k,jl = bli,j-1,k] + b[i,j,k] + b[i,j+1,k]

— bli,j+1,k] is reused in the next two iterations, but will
have been flushed from the cache by the k loop

Ly CSE P 501 Spring 2018 L-52

52

Loop Interchange

* Solution for this example: interchange j and k
loops
for (i=0;i<m; i++)
for (k =0; k < p; k++)
for (j=0;j<n; j++)
ali,k,j] = bli,j-1,k] + b[i,j,k] + b[i,j+1,k]

— Now bli,j+1,k] will be used three times on each cache
load

— Safe here because loop iterations are independent

L CSE P 501 Spring 2018 U-53

53

Loop Interchange

* Need to construct a data-dependency graph
showing information flow between loop
iterations

* For example, iteration (j, k) depends on
iteration (j’, k") if {j’,k’) computes values used in
(j,k) or stores values overwritten by (j,k)

— If there is a dependency and loops are
interchanged, we could get different results — so
can't do it

L CSE P 501 Spring 2018 U-54

54

Blocking

Consider matrix multiply
for{i=0;i<n;i++)
for (j=0;j<n; j++) {
c[i,j] = 0.0;
for (k=0; k < n; k++)
cli,jl = cli,j] + ali,k]*b[k,j]
}
* If q, b fitin the cache together, great!

* |f they don’t, then every b[k,j] reference will be a cache

miIss
* Loop interchange (i<->j) won’t help; then every ali,k]
reference would be a miss

L CSE P 501 Spring 2018

U-=5

55

Blocking

* Solution: reuse rows of A and columns of B
while they are still in the cache

* Assume the cache can hold 2*c*n matrix
elements (1 <c<n)

* Calculate ¢ x ¢ blocks of C using ¢ rows of A
and c columns of B

Ly CSE P 501 Spring 2018 L-56

56

Blocking

* Calculating ¢ x ¢ blocks of C
for (i=1i0; i <i0+c; i++)
for (j = jO; j < jO+c; j++) {
cli,j] = 0.0;
for (k =0; k < n; k++)
cli,j] = cli,j] + ali,k]*b[k,j]

Ly CSE P 501 Spring 2018 L-57

57

Blocking

* Then nest this inside loops that calculate
successive ¢ x ¢ blocks
for (i0 = 0; i0 < n; i0+=c)
for (jO = 0; jO < n; j0+=c)
for (i =i0; i < i0+c; i++)
for (j =jO; j < jO+c; j++) {
cli,j] = 0.0;
for (k =0; k < n; k++)
cli,jl = cli,j] + ali,k]*b[k,j]
J

Ly CSE P 501 Spring 2018 L-58

58

Parallelizing Code

* There is a large literature about how to
rearrange loops for better locality and to
detect parallelism

* Some starting points

— Latest edition of Dragon book, ch. 11

— Allen & Kennedy Optimizing Compilers for Modern
Architectures

— Wolfte, High-Performance Compilers for Parallel
Computing

Ly CSE P 501 Spring 2018 59

59

