
CSE584: Software Engineering
Lecture 1: Introduction & Overview

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Outline

• Intent and overview of course
• Software engineering overview

– Stuff you already know, but it’s important to lay it
out so we are working from the same page

• Notkin’s top 10 “insights”
– My goal is to lay out my prejudices and views, to

increase your understanding of the intent of the
course

• Overview of course work and
administrivia

Introductions

• Very useful for me (and you)
– What do you do?
– What do you want from the

class?
– What are the most serious

software engineering
problems you face?

• But time consuming, so we’ll
do it electronically

– Through the email list
(cse584@cs.washington.edu)

– Distributed to the entire class

But I do want some basics

• What companies do you work for?
• What is your general responsibility?

– Development, testing, maintenance,
other?

• Take a couple of minutes at each site
to gather these data
– I’ll handle the UW site
– The person whose last name comes first

alphabetically handles the other sites

• Announce when you’re ready

Interaction

• I like to have interaction with students
during class, especially 584
– You have tons of key insights in your

head
– It’s boring just listening to me

• Especially in the evening & during a long class

• Try just interrupting me; if that doesn’t
work, we’ll try something else

• Remind me to repeat questions, since
it’s often hard to hear them at other
sites

Your undergraduate
experience?

• How many of you took
an undergraduate
software engineering
course?

• Did any of you think it
was good?

• What, specifically, was
particularly good or
bad about it?

This is my guess
about your answers

For non-UW grads,
that is!

Intent of course

• Most of you have jobs engineering software
– I don’t (and I never really have)

• So, what can I teach you?
– Convey the state-of-the-art

• Especially in areas in which you don’t usually work
– Better understand best and worst practices
– Consider differences in software engineering of

different kinds of software

• You provide the context and experience
• Meeting and talking to each other is key

Lots of differences among you

• You have a lot in common
– Undergrad degree in CS or related field
– Significant experience in the field
– You’re really smart

• You also have a lot of differences
– Development vs. testing
– Desktop vs. real-time
– Different company cultures
– …and much, much more

• This in part will be why some material in the
course will resonate with you, while other
material won’t

My metric for success

• Maybe from readings
• Maybe from discussions with other students
• Maybe from assignments
• Maybe even from lecture

I will consider this a successful course if,
over the course of the next year or so, you
approach some specific problem you face
differently because of the course

Another key intent

• There is general agreement that
– Research in software engineering doesn’t have

enough influence on industrial practice
– And much in industry could improve

• Why is this true?
– What can academia do to improve the situation?
– What can industry do to improve the situation?

• By the way, I believe that this perception is
not entirely accurate
– But it’s still a crucial issue for lots of reasons

Possible impediments

• Lack of communication
– Industry doesn’t listen to academia
– Academia doesn’t understand

industrial problems
• Academic tools often support

programming languages not
commonly used in industry

Other possible impediments?

• In groups of 3 or 4, list some
other possible impediments

• In 3 minutes, we’ll gather a set of
suggestions

GO! STOP!

Tichy’s main impediment

• Walter Tichy has claimed that the major impediment
is the lack of “experiments” in CS research
– “Should Computer Scientists Experiment More? 16

Excuses to Avoid Experimentation.” IEEE Computer
31(5), May 1998.

– http://wwwipd.ira.uka.de/~tichy/
• I have lots of reactions, including

– I don’t think industry, as a rule, finds this to be a (the)
major impediment

– We do experimentation, in a different style
– Evaluation is difficult in software engineering, so we

must be creative
– This is an example of science envy

Software is increasing critical to
society

0

5000

10000

15000

20000

25000

30000

35000

40000

KLOC

&6(����SURJUDP

��VSHHG�[PLVVLRQ

$70�PDFKLQH

%��

17���

and it’s getting bigger and more complex

0

20

40

60

80

100

120

140

Feet High

ATM (my 3 year-
old)

B-2 (Tao on my
shoulders)

NT5.0 (Statue of
Liberty from base)

Absolute sizes

• 50 lines per page
• Double sided
• 500 pages/ream

(2 inches)

How I spend my time

• The Great Pyramid of Giza is 481’
• The Kingdome was 250’
• The Colossus of Rhodes is 110’
• The Eiffel Tower is 1033’
• The Graduate Reading Room in Suzzallo is

65’
• A 747 is 63’ to the top of the tail
• The Brooklyn Bridge is 135’ above the water
• Titanic’s height from keel to bridge is 104’
• The EE1 building is about 90’

Delivered source lines per
person

• Common estimates are that a person can
deliver about 1000 source lines per year
– Including documentation, scaffolding, etc.
– Independent of the programming language
– Yeah, you do better J

• Obviously, most complex systems require
many people to build

• Even an order of magnitude increase doesn’t
eliminate the need for coordination

Inherent & accidental
complexity

• Brooks distinguishes these kinds of
software complexity
– We cannot hope to reduce the inherent complexity
– We can hope to reduce the accidental complexity

• Some (much?) of the inherent complexity
comes from the incredible breadth of
software we build

• That said, it’s not always easy to distinguish
between these kinds of complexity

“The Software Crisis”

• We’ve been in the midst of a “software
crisis” ever since the 1968 NATO meeting
– crisis — (1) an unstable situation of extreme

danger or difficulty; (2) a crucial stage or turning
point in the course of something [WordNet]

– I was 13, and many of you weren’t born yet

• We cannot produce or maintain high-quality
software at reasonable price and on
schedule
– Gibb’s Scientific American article [in your course pack]

– “Software systems are like cathedrals; first we
build them and then we pray” —S. Redwine

Some classic “crisis” issues

• Relative cost of hardware/software
– Where’s Moore’s Law for software?

• Low productivity
• “Wrong” products
• Poor quality

– Importance depends on the domain

• Constant maintenance
– “If it doesn’t change, it becomes useless”

• Technology transfer is (too) slow

Notkin’s view—“mostly
hogwash”

• Given the context, we do pretty well
– We surely can, should and must improve

• Some so-called software “failures” are not
– They are often primarily management errors

(Ariane, Denver airport, U.S. air traffic control, etc.)
• Interesting recent article in the Wall Street Journal

on Australia’s and New Zealand’s success in air
traffic control

– Read comp.risks

• In some areas, we may indeed have a
looming crisis
– Safety-critical real-time embedded systems
– Y2K wasn’t

Software engineering is a
“wicked problem”

• Cannot be easily defined so that all stakeholders agree on
the problem to solve

• Require complex judgments about the level of abstraction
at which to define the problem

• Have no clear stopping rules
• Have better or worse solutions, not right and wrong ones
• Have no objective measure of success
• Require iteration — every trial counts
• Have no given alternative solutions — these must be

discovered
• Often have strong moral, political or professional

dimensions

S. Buckingham Shum
http://kmi.open.ac.uk/people/sbs/org-knowledge/aikm97/sbs-paper2.html

Other problems

• Lack of well-understood
representations of software [Brooks]
makes customer and engineer
interactions hard

• Relatively young field
• Software intangibility is deceptive

Law XXIII, Norman Augustine
[Wulf]

“Software is like entropy. It is difficult
to grasp, weighs nothing, and obeys
the second law of thermodynamics;
i.e., it always increases.”

Dominant discipline

As the size of the software system
grows, the key discipline changes
[Stu Feldman, thru 107]

Code Size Discipline
103 Mathematics
104 Science
105 Engineering
106 Social Science
107 Politics
108 ??

Notkin’s Top 10 Observations

• About software engineering
– With apologies and appreciation to many

unnamed souls

• I’d appreciate help revising this list
over the quarter

• And, again, the intent of this is to
convey, now, many of my prejudices
– You’re not required to share them, but

you’ll understand more because I’m being
explicit about (most of) them

1. Don’t assume similarity
among software systems

• Does (and should) the reliability of a nuclear
power plant shutdown system tell us much
about the reliability of an educational game
program?

• Does (and should) the design of a sorting
algorithm tell us much about the design of
an event-based GUI?

• So, assume differences until proven
otherwise: not doing so causes a
tremendous amount of confusion in the
degree of applicability of different research
approaches, tools, etc.

2. Intellectual tools dominate
software tools in importance

• How you think is more important than
the notations, tools, etc. that you use

• Ex: Information hiding is a key design
principle
– Interface mechanisms can enforce

information hiding decisions but cannot
help one make the decisions

• Ex: The notion of design patterns is
more important than languages that
let you encode them

3. Analogies to “real”
engineering are fun but risky

• One reason is because of the
incredible rate of change in hardware
and software technology
– Wulf: what if the melting point of iron

changed by a factor of two every 18
months?

• Another is that software seems to be
constrained by few physical laws

• But I’ll make them anyway, I’m sure
– And you will, too

Aside: should software
engineers be licensed?

• You may have heard about this issue
– For example, Texas now requires (under some

conditions) that software engineers be licensed as
professional engineers

• It’s an incredibly complex issue
– Technically, socially, politically and legally
– I’d be happy to discuss my views on this with

individuals (including on the mailing list), but I
won’t spend time in class on it

• BTW, I am strongly opposed to licensing
software engineers for the foreseeable future

4. Estimating benefits is easier
than estimating costs

• “If only everyone only built software
my way, it'd be great” is a common
misrepresentation

– Ex: The formal methods community is
just starting to understand this

• But at the same time, estimating the
costs and the benefits is extremely
hard, leaving us without a good way to
figure out what to do

5. Programming languages
ensure properties distant from

the ones we want

• Programming languages can help a
lot, but they can’t solve the "software
engineering" problem

• Ex: Contravariant type checking (such
as in ML) has significant benefits, but
regardless, it doesn’t eliminate all
errors in ML programs
– And covariant typing, with its flaws, may

be useful in some situations

6. The total software lifecyle
cost will always be 100%

• Software development
and maintenance will
always cost too much

• Software managers
will always bitch and
moan

• Software engineering
researchers will
always have jobs

• Software engineers
will always have jobs

7. Software engineering is
engineering

• Although software engineering draws
heavily on mathematics, cognitive
psychology, management, etc., it is
engineering in the sense that we produce
things that people use
– It’s not mathematics, nor cognitive psychology,

nor management (nor etc.)
• Nor logical poetry (cf. the Michael Jackson video

we’ll see later in the quarter)

• If somebody is talking about engineering
software without ever mentioning
“software”, run away

8. Tradeoffs are key, but we’re
not very good at them

• Getting something for nothing is great, but it
isn’t usually possible

• We almost always choose in favor of hard
criteria (e.g., performance) over soft criteria
(e.g., extensibility)
– This makes sense, both practically and

theoretically
– Brooks’ Golden Rule doesn’t really work
– But the situation leaves us up a creek a lot of the

time

• Maybe we’re about to get better at this as the
cost of people continues to grow
– But I doubt it

9. It’s good to (re)read anything
by Brooks, Jackson & Parnas

• “A classic is something everyone
wants to have read, but nobody wants
to read.” [Mark Twain]

• It’s more important to read their works
than to read the latest glossy rag or
modern book on the latest fad

• Really

10. Researcher ⇔ Practitioner

• Software engineering researchers
should have a bit of the practitioner in
them, and software engineering
practitioners should have a bit of the
researcher in them

• At the end of the quarter, I hope that
I’ll have more understanding of
practice, and you’ll have more
understanding of the research world

Overview—five topics

• Requirements and specification
• Design
• Evolution (maintenance, reverse

engineering, reengineering)
• Analyses and tools (static and dynamic)
• Quality assurance and testing

• Yes, there is some overlap
• I reserve the right to completely change my mind

about the order and exactly what is covered!

What’s omitted? Lots

• Metrics and measurement
– Some in QA

• CASE
– Some in evolution and tools

• Software process
– CMM, ISO 9000, etc.

• Specific methodologies
• [UX]ML
• Software engineering for specific domains

(real-time, the web, etc.)
• What else?

Requirements & specification
 (2 lectures)

• Formal methods
– State-based, algebraic,

model-based
– Model checking

• Problem and domain
analysis
– Problem frames, use-case,

collaborations, etc.

• Highlight: A Michael
Jackson video

Design (2 lectures)

• Classic topics
– Information hiding
– Layered systems
– Event-based designs (implicit invocation)

• Neo-modern design
– Limitations of classic information hiding
– Design patterns
– Software architecture
– Frameworks

Evolution (2 lectures)

• Why software must change
• How and why software structure

degrades
• Approaches to reducing structural

degradation
• Problem-program mapping
• Program understanding,

comprehension, summarization

Analyses and Tools (2 lectures)

• Static analyses
– Type checkers
– Extended type checkers

• Dynamic analyses
– Profiling
– Memory tools
– Inferring invariants

Quality assurance (1 lecture)

• Verification vs. validation
• Testing

– White box, black box, etc.

• Reliability
• Safety (maybe)

Anything else? Overview of course work

• Four assignments, each of a different form
– A standard homework, a paper distilling research in an

area, an assessment of a research prototype tool, etc.
– All turned in electronically; each worth 23% of the grade

• The other 8% will represent your interaction in lecture
and (more importantly) on the mailing list
– Discussion of papers, of lectures, and of other software

engineering issues on your mind
• This is especially important for a distance learning

class
• It’s the best way to learn from each other

– You are responsible for pushing the discussion threads,
although the TA and I will participate

Grading: Let’s make a deal

• If you focus on the material and
don’t get compulsive about
grading …

• … then I will focus on the
material and not get compulsive
about grades

Goodnight

• And don’t forget to buy those
course packs

