
CSE584: Software Engineering
Lecture 2: Requirements & Specification (A)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Requirements & specification

• More software systems fail because
they don’t meet the needs of their
users than because they aren’t
implemented properly

• Boehm:
– Verification: Did we build the system

right?
– Validation: Did we build the right system?

Our plan of attack: this week

• An overview of the key problems in
requirements and specification

• A brief history in proving programs correct
– An expected panacea for software that didn’t pan

out
– But has provided some benefits

• A look at formal specifications, with a focus
on two forms
– Program correctness (as a basis for model-based

specifications)
– Model-based specifications (Z)
– Overview of state machine based specifications

Our plan of attack: next week

• Analysis of state machine based
specifications (model checking)

• A brief overview of requirements
engineering issues

• Michael Jackson on video: “The World
and the Machine”

Non-functional requirements

• We’re simply going to ignore non-functional
requirements
– Performance, ease of change, etc.

• I’m not proud of this, but there is relatively
little known about this issue
– Worthwhile concrete discussion: should an

interface’s specification (documentation) specify
the performance of the operations?

• Pro: Sure, it’s a key property (and people will find it
out anyway)

• Con: No way, since I’m supposed to be able to
change an implementation as long as it behaves the
same

A key problem: ambiguity

• (You’ll have your own favorites along
these lines; this is from Jackson’s
book on our reading list)

• In an airport at the foot of an escalator

Shoes must
be worn

Dogs must
be carried

In logic it’s clear

∀x • (OnEscalator(x)⇒
 ∃y •(PairOfShoes(y)∧ IsWearing(x,y))
∀x • ((OnEscalator(x)∧ IsDog(x)) ⇒

 IsCarried(x)

Formalization still leaves open
questions

• Do dogs have to wear shoes?
• What are “shoes”? What are “dogs”? What does it

mean to wear shoes?
• Why do the formalizations say “dogs are carried” and

“shoes are worn” while the signs say “must be”?
• As Jackson will say in the video (with a different

example)
– The formalizations are in the indicative mood:

statements of fact
– The signs are in the optative mood: statements of

desire
– This kind of “mood mixing” increases confusion

“dog” (noun)

• OED has 15 definitions
– 11K words in the full definition

• Webster’s 11 definitions include
– a highly variable domestic mammal (Canis

familiaris) closely related to the common wolf
– a worthless person
– any of various usu. simple mechanical devices for

holding, gripping, or fastening that consist of a
spike, rod, or bar

– FEET
– an investment ... not worth its price
– an unattractive girl or woman

“shoe” (noun, Webster’s):
six definitions including

• an outer covering for the human foot usu.
made of leather with a thick or stiff sole and
an attached heel

• another’s place, function, or viewpoint
• a device that retards, stops, or controls the

motion of an object
• a device (as a clip or track) on a camera that

permits attachment of accessory items
• a dealing box designed to hold several

decks of playing cards

A students’ view Another high-level issue

• Specification languages
that are “closer” to the user
decrease the change of
building the wrong system

– But increase the chance of
building the system wrong

• And specification
languages that are “closer”
to the program do the
opposite

Program

Specification

Formalism

• In the mid-1960’s, there was a set of software
research — today we call it programming
methodology — that was intended (in my
view) to solve two problems
– Decrease ambiguity through the use of

mathematics to specify programs
– Allow us to prove programs correct by showing

that a program satisfies a formal specification

• Turing Awards in this area include: Dijkstra (1972),
Floyd (1978), Hoare (1980), Wirth (1984), Milner (1991),
Pnueli (1996)

Don’t be confused…

• I don’t believe that
this is a practical
approach

– It may be applicable
in some rare
situations

• But it’s a useful
basis for some other
work

– And the historical
context is important

– And the technical
material of value

Basics of program correctness

• In a logic, write down (this is often called the
specification)
– the effect of the computation that the program is

required to perform (the postcondition Q)
– any constraints on the input environment to allow this

computation (the precondition P)

• Associate precise (logical) meaning to each construct
in the programming language (this is done per-
language, not per-program)

• Reason (usually backwards) that the logical
conditions are satisfied by the program S

• A Hoare triple is a predicate {P}S{Q} that is true
whenever P holds and the execution of S guarantees
the Q holds

Examples

• {true}
 y := x * x;
{y >= 0}

• {x <> 0}
 y := x * x;
{y > 0}

• {x > 0}
 x := x + 1;
{x > 1}

Sequential execution

• What if there are multiple
statements
–{P} S1;S2 {Q}

• We create an
intermediate assertion
–{P} S1 {A} S2 {Q}

• We reason (usually)
backwards to prove the
Hoare triples

• A formalization of this
approach essential
defines the ; operator in
most programming
languages

• {x > 0}
 y := x*2;
 z := y/2
{z > 0}

• {x > 0}
 y := x*2;
{y > 0}
 z := y/2
{z > 0}

Conditional execution

• {P}
 if C then S1
 else S2 fi
{Q}

• Must consider both
branches

• Ex: compute the
maximum of two
variables x and y

{true}
 if x >= y then
 max := x
 else
 max := y
 fi
{max >= x ∧ max >= y}

{P} if C then S1 else S2 {Q}
≡

 {P ∧ C}S1{Q} ∧ {P ∧ ¬ C}S2{Q}

Be careful!

• {true}
 max := abs(x)+abs(y);
{max >= x ∧ max >= y}

• This predicate holds, but we don’t want it to
– The postcondition is written in a way that permits

satisfying programs that don’t compute the maximum of
x and y

– Side observation: (almost) every specification is
satisfied by an infinite number of programs and vice
versa

• The right postcondition is
– {max = x ∨ max = y} ∧
{max >= x ∧ max >= y}

Another classic mis-specification

• Postcondition for sorting an array
– ∀ i,j • i < j ⇒ a[i] <= a[j]

• for i := 1 to n do
 a[i] := i
endfor

• (∀ i,j • i < j ⇒ a[i] ⇒ a[j]) ∧
 A = permutation(A’)

– It’s even more complicated if you want to define a stable
sorting specification

• Stable sorting leaves equal keys in the same order as they
were

Assignment statements

• We’ve been highly informal in dealing with
assignment statements
– “Associate precise (logical) meaning to each

construct in the programming language …”
• What does the statement x := E mean?

– {Q(E)} x := E {Q(x)}

– If we knew something to be true about E
before the assignment, then we know it to
be true about x after the assignment

• Assuming no side-effects

Examples

• {y > 0}
 x := y
{x > 0}

• {x > 0} [Q(E) ≡ x + 1 > 1 ≡ x > 0]
 x := x + 1;
{x > 1} [Q(x) ≡ x > 1]

• { ? }
 x := y + 5
{x > 0}

• {x = A ∧ y = B }
 t := x;
 x := y;
 y := t
{x = B ∧ y = A }

Loops

• {P} while B do S {Q}
• We can try to unroll this into

– {P ∧ ¬ B} S {Q} ∨
{P ∧ B} S {Q ∧ ¬B} ∨
{P ∧ B} S {Q ∧ B} S {Q ∧ ¬B} ∨ …

• But we don’t know how far to unroll, since
we don’t know how many times the loop can
execute
– We’re essentially looking for a fixed point of the

loop

• For the moment, let’s ignore the newest
problem we have: dealing with termination

Loop invariants

• The most common approach to this is to find
a loop invariant (I), a predicate that

– Is true each time the loop head is reached
– And helps us prove the properties we need

• (It approximates the fixed point of the loop)
• If we have {P} while B do S {Q} then find
I such that

– P ⇒ I -Invariant is correct on entry

– {B ∧ I} S {I} –It’s invariant
– {¬B ∧ I} ⇒ Q –Loop termination proves Q

Example

{n > 0}
 i := 2;
 x := a[1];
 while i <= n do
 if a[i] > x then x := a[i];
 i := i + 1;
 end;
{x = max(a[1],…,a[n])

∧
2 ≤ i ≤ n + 1

x = max(a[1],…,a[i-1])

Termination

• A Hoare triple for which termination has been proven
is strongly correct

• A Hoare triple that is true if termination occurs is
weakly correct

• Proofs of termination are usually performend
separately from proofs of correctness, and they are
usually performed through well-founded sets
– In this example it’s easy, since i is bounded by n, and i

increases at each iteration
• Historically, the interest has been in proving that a

program does terminate
– Many important programs now are intended not to

terminate

What’s left in classic program
correctness?

• Dijkstra’s weakest precondition (wp)
formulation is a more popular alternative to
Hoare triples
– wp(S,Q) is the weakest precondition such that if
S is executed, Q will be true
• {P}S{Q} ≡ P ⇒ wp(S,Q)

• Oh yeah, and procedure calls (with different
parameter passing mechanisms), pointers,
gotos (!!), concurrency, and other real
programming language constructs (not even
counting OO features like dynamic dispatch)

Correctness of data structures
• This is a biggie, which you’ve

already seen in Z
– Showing the

implementation of the
BirthdayBook satisfied the
specification

– Primarily due to Hoare;
figures from Wulf et al.

• Prove the specifications on
the abstract operations (e.g.,
Pusha)

• Prove the specifications on
the concrete operations (e.g.,
Pushc)

• Prove the relation between
abstract and concrete
operations (e.g., R), the
representation mapping

<x1,x2> <x,x1,x2>

Pusha(S,x)

S.sp = 2
S.v =

[x2,x1,?,?,...]

S.sp = 3
S.v =

[x2,x1,x,?,...]

Pushc(S,x)

R R

Example

{¬full(Sa)} {¬full(R(Sc))}
 Pusha(Sa,x) Pushc(Sc,x)
{Sa=<x>||S’a} {R(Sc) = <x>||
 R(S’c)}

So what?

• I just spent about an hour showing you stuff that I
said isn’t especially useful
– It’s tedious and error-prone

• If we can’t get our programs right, why should we
believe we get our detailed proofs right?

• One answer: tools, such as proof assistants
– It’s hard with real programming languages and

programs
• But it does lay a foundation for

– Thinking about programs more precisely
– Applying techniques like these in limited, critical

situations
– Development of some modern specification and

analysis approaches that seem to have value in more
situations

Formal methods

• The failure of proof of correctness to meet its
promises caused a heavy decrease in interest in the
late 1970’s and the 1980’s

• But there has been a resurgence of interest in formal
methods starting in the late 1980’s and through the
1990’s
– Mostly due to potential usefulness in specification and a

few success stories
– Still not entirely compelling to me, in a broad sense, but

definitely showing more promise
– Key issues to me include

• Partial specifications
• Tool support (making specifications “electric” — D.

Jackson)
• What domains, and applied by whom?

Potential benefits

• Increased clarity
• Ability to check for internal consistency

– This is very different from program correctness,
where the issue was to show that a program
satisfied a specification

• Ability to prove properties about the
specification
– Related to M. Jackson’s refutable descriptions

• Provides basis for falsification (a fancy word
for “debugging”)
– Perhaps more useful than verification

C.A.R. Hoare, 1988

Of course, there is no fool-proof methodology
or magic formula that will ensure a good,
efficient, or even feasible design. For that, the
designer needs experience, insight, flair,
judgement, invention. Formal methods can
only stimulate, guide, and discipline our human
inspiration, clarify design alternatives, assist in
exploring their consequences, formalize and
communicate design decisions, and help to
ensure that they are correctly carried out.

Observation

• From a specification of a small
telephone system
– “…a subscriber is a sequence of digits.
Let Subs be the set of all subscribers …
...certain digit sequences correspond to
unobtainable numbers, and some are
neither subscribers, nor are they
unobtainable.”

• “Only a mathematician could treat the
real world with such audacious
disdain.” —M. Jackson

Anthony Hall’s view

VS.

And Martyn
Thomas sez…

Styles of specifications

• Model-oriented (e.g. Z, VDM)
• Algebraic (e.g. OBJ, Larch)
• Process Model (e.g. CCS, CSP)
• Finite state-based (e.g. Statecharts,

RSML)
• Logical, constructive, multi-paradigm,

broad spectrum, ...

Model-oriented

• Model a system by describing its state
together with operations over that state
– An operation is a function that maps a value of the

state together with values of parameters to the
operation onto a new state value

• A model-oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software

Z (“zed”)

• Perhaps the most widely known and used
model-based specification language

• Good for describing state-based abstract
descriptions roughly in the abstract data
type style
– Real ADT-oriented specifications are generally

does as algebraic specifications

• Based on typed set theory and predicate
logic

• A few commercial successes
– I’ll come back to one reengineering story

afterwards

Basics: you already read this

• Static schemas
– States a system can occupy
– Invariants that must be maintained in

every system state

• Dynamic schemas
– Operations that are permitted
– Relationship between inputs and outputs

of those operations
– Changes of states

The classic example

• A “birthday book” that tracks people’s
birthdays and can issue reminders of
those birthdays
– There are tons of web-based versions of

these now

• There are two basic types of atomic
elements in this example
– [NAME,DATE]
– An inherent degree of abstraction:

nothing about formats, possible values,
etc.

Points about the Z reading

• This isn’t proving correctness
between a spec and a program
– There isn’t a program!

• Even the spec without the
implementation has value

• The most obvious example is when a
theorem is posited and then is proven
from the rest of the specification
– known’ = known ∪ {name?}

More points about the Z reading

• The actual notation seems more effective
that some others

• The Z is intended to be in bite-sized chucks
(schema), interspersed with natural
language explanations
– cf. M. Jackson in the video next week

• ZF (Zermelo-Fraenkel Set Theory), of which
the set comprehension operator • is a part,
helps increase clarity

Schema calculus: sweet!

• The schema calculus allows us to
combine specifications using logical
operators (e.g., ∧, ∨, ⇒, ¬)
– This allows us to define the common and

error cases separately, for example, and
then just ∧-ing them together

• In some sense, it allows us to get a
cleaner, smaller specification

But don’t try this on programs!

• Wouldn’t it be fantastic if we had the
equivalent of the schema calculus on
programs?
– Write your error cases separately and then just ∧

them together
– Write a text editor and a spell checker and

integrate them by ∧-ing them together
– So you want to build a program that doesn’t blow

up a nuclear power plant?
• Just build one that does, and then negate it!

• Programs are not logic
– Some classes of programming languages come

closer than imperative and OO languages

Z/CICS

• Z was used to help develop the next release
of CICS/ESA_V3.1, a transaction processing
system
– Integrated into IBM’s existing and well-established

development process
– Many measurements of the process indicated that

they were able to reduce their costs for the
development by almost five and a half million
dollars

– Early results from customers also indicated
significantly fewer problems, and those that have
been detected are less severe than would be
expected otherwise

1992 Queen’s Award
for Technological Achievement

• “Her Majesty the Queen has been graciously pleased
to approve the Prime Minister's recommendation that
The Queen's Award for Technological Achievement
should be conferred this year upon Oxford University
Computing Laboratory.

• “Oxford University Computing Laboratory gains the
Award jointly with IBM United Kingdom Laboratories
Limited for the development of a programming
method based on elementary set theory and logic
known as the Z notation, and its application in the
IBM Customer Information Control System (CICS)
product. …”

...

• “The use of Z reduced development costs
significantly and improved reliability and
quality. Precision is achieved by basing the
notation on mathematics, abstraction
through data refinement, re-use through
modularity and accuracy through the
techniques of proof and derivation.

• “CICS is used worldwide by banks,
insurance companies, finance houses and
airlines etc. who rely on the integrity of the
system for their day-to-day business.”

Other success stories

• There are a few other success stories, too (not all Z!)
– Ex: Garlan and Delisle. "Formal Specification of an

Architecture for a Family of Instrumentation Systems"
(1995)

– Aided Tektronix in unifying their understanding and
development processes for a broad range of
oscilloscopes, function generators, etc.

• Clarke and Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys 28(4),
1996.

• Craigen, Gerhart, Ralston. An International Survey of
Industrial Applications of Formal Methods, Volumes I
& II (Purpose, Approach, Analysis and Conclusions;
Case Studies), NIST, 1993.

Tool support for Z?

• Some commercial, some freeware
• Formatting (handling all those ⇒•⊕Ξ∆∉∅θ

characters)
– And now some html extensions

• Type checkers
• Proof editors, proof assistants, provers
• Specification animations
• …
• Most found through http://archive.comlab.ox.ac.uk/z.html

Analyzing specifications

• It is easy to write specification that are inconsistent
– This means that you can prove a given theorem both

true and false given the specification
– Alternatively, one can check a hypothesis against the

specification and see if it holds (we saw this in Z)
• Daniel Jackson and colleagues have developed a sequence

of tools that check Z-like specifications for inconsistencies
• You feed a spec to the tool and it says either

– Here’s a problem, and here’s a specific
(counter)example of it, or

– I can’t find one (although there may be one)
• Examples include paragraph style mechanisms, telephone

switch structures, many more (generally relatively small)
– Pieces of the ideas appear in Jackson and Chapin.

Redesigning Air-Traffic Control: A Case Study in
Software Design. IEEE Software, May/June 2000

An example (skipping lots of steps):
Jackson & Vaziri

class List {List next; Val val;}

…
void static delete (List l, Val v) {
 List prev = null;
 while (l != NULL)

 if (l.val == v) {
 prev.next = l.next ;
 return; }
 else {

 prev = l ;
 l = l.next ;
}

• Procedure for deleting all
elements with a given value
from a singly linked list

• Relational formulae are
automatically extracted

• Fields of List treated as binary
relations
• next: List → List
• val: List → Val

Desired properties of delete

• No cells are added
– l.*next’ in l.*next

• No cell with value v afterwards
– no c:l.*next’|c.val’=v

• All cells with value v removed
– l.*next’ = l.*next-{c|c.val=v}

• No cells mutated
– all c|c.val = c.val’

• No cycles introduced
– no c:l.*next|c in c.+next ->

 no c:l.*next’|c in c.+next’

Running the tool shows that
• Properties 1, 4 and 5

appear to hold
• But not properties 2 and 3

• Property 2 fails
because the first list cell
cannot be deleted

• Even a simple fix shows
another error, in which
the last two cells share
a value equal to v

Underlying technologies

• The Jackson et al. tools have been
based on (primarily) two different
technologies
– Model checking

• Explicit state space enumeration
• BDD-based symbolic model checking

– Constraint satisfaction (boolean
satisfiability)

• Stochastic (WalkSAT)
• Deterministic (Davis-Putnam, SATO, RelSAT)

Algebraic specifications
(in one slide)

• The formal model used most frequently for
abstract data types

• Define an algebra (over a set of types or
“sorts”) that gives the semantics of the
operations

• Classic example
– pop(push(S,x)) = S
– top(push(S,i)) = i

– …

• Can define notions of consistency and
completeness

Finite state machines

• There is a large
class of
specification
languages based on
finite state machines

• Often primarily for
describing the
control aspects of
reactive systems

• The theoretical basis
is very firm

• A finite set of states
• A finite alphabet of

symbols
• A start state and zero or

more final states
• A transition relation

a b

b

a

Many, many models

• Petri nets
• Communicating finite state

machines
• Statecharts
• RSML
• …

Walkman example
(due to Alistair Kilgour, Heriot-Watt University)

A common problem

• It is often the case that conventional
finite state machines blow-up in size
for big problems
– This is especially true for deterministic

machines (which are usually desirable)
– And for machines capturing concurrency

(because of the potential interleavings
that must be captured)

Statecharts (Harel)

• A visual formalism for defining
finite state machines

• A hierarchical mechanism allows
for complex machines to be
defined by smaller descriptions
– Parallel states (AND decomposition)
– Conventional OR decomposition

Tools

• Statecharts have a set of supporting
tools from i-Logix (STATEMATE,
Rhapsody)
– Editors
– Simulators
– Code generators

• C, Ada, Verilog, VHDL

– Some analysis support

• Statecharts (roughly) are a central
part of UML

i-Logix screenshot Analysis

• Given a Statecharts description, how
can one tell if it has some desirable
properties?
– For instance, is it deterministic?
– Are there deadlocks?
– And domain-specific properties, too

• Perhaps the most promising
technology for helping with this is
model checking

Which we’ll look at next week

• At the beginning of class

