
J-1

CSE584: Software Engineering
Lecture 3: Requirements & Specification (B)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Last week & this week

• Last week
– Overview
– Program correctness
– Model-based specifications (Z)
– Intro to state machines

• This week
– Analysis of state machine based specifications

(model checking)
– Michael Jackson on video: “The World and the

Machine”
– Some wrap up

Before that…

• Last week I was at a workshop on highly dependable
computing systems
– At NASA Ames Research Center

• Academia, government, industry
– IBM, Sun, Oracle, Sybase, Microsoft, Boeing, Honeywell,

…
• Keynotes, case studies, breakout sessions, etc.
• Dependability is different things to different people
• Over all, I think that there were two camps

– Use technology to improve dependability
– Build a “culture of dependability”

Two NASA failures:
each over $100 million

http://www.nasa.gov/newsinfo/marsreports.html

• Mars Climate Orbiter
– A confusion in metric/English units caused an

engine to fire too strongly, bringing the spacecraft
too close to Mars and causing it to crash instead of
orbiting

• Polar lander (very probable cause)
– At 40m above Mars, a parachute and spring-loaded

legs were deployed and a new control regime was
used as planned

– The spring-loaded legs bounced, causing the
regime to think that the pads had hit the surface

– The engine was turned off and the spacecraft
crashed

Specification errors?

• Not the units
– The specification was completely clear about this
– A new programmer didn’t know or check, and used the

wrong units
– Not caught by testing, inspections, etc.

• Tricky to catch by testing, since it was a second
order effect

– What can be done about errors like these?
• Polar lander? Unclear

– Each module (regime) worked as specified
– The < 40m module assumed that a variable would be in a

particular state upon entry, but it wasn’t due to the leg
bounce

– What this a problem in the inter-module specification? In
the implementation of the <40m module? Testing?
Something else?

Specifications thread

• I found it interesting to come back from this
workshop and see the thread on the mailing
list about “spec avoidance”

• Specs would surely help solve some —
perhaps many — of your problems
– But not all
– And the cost is not clear
– I’ll note that most of you wanted specs, but didn’t

necessarily want the responsibility of writing them

• See the paper that Cordell Green mentioned,
which I posted on the mailing list

J-2

State machines

• Good for specifying reactive systems, protocols, etc.
• Event-driven

– External events (actions in the external environment,
such as “button pushed”, “door opened”, “nuclear core
above safe temperature”, etc.)

– Internal events (actions defined in the internal system to
cause needed actions)

– Can generate external events that may drive actuators in
the environment (valves may be opened, alarms may be
rung, etc.)

– Transitions can have guards and conditions that control
whether or not they are taken

• “Flat” (non-hierarchical) state machines tend to
explode in size relatively quickly

Classic examples

• Specifying a cruise control
• Specifying the traffic lights at an

intersection
• Specifying trains on shared tracks

– Could be managing the bus tunnel
in Seattle

• Etc.

A snippet of cruise control

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

• Completely incomplete
• There should be guards and conditions on transitions
• Lots of information left out

More cruise control

• What if your state machine also tracked speed?
– Maybe the cruise control doesn’t work at low speeds
– Anyway, it needs to remember a speed so it can resume

properly
• What if it also interacted with the door locking

system?
• You might have to modify almost every state to track

not only the state on the previous slide, but the speed,
too
– Essentially, you need to build a cross product of all

combinations of states
• This is the kind of issue that can cause the machine to

blowup in size
– It’s not the best example, but it’s adequate

Statecharts: “review”

• The idea of statecharts [Harel] is to provide a rich, visual
representation for defining finite state machines that capture
the essence of complex, reactive systems
– Specifically addresses description explosion problem

• Sorry, there isn’t a simple, easy-to-get, reference
– “The” statecharts paper, but long and a bit hard to find.

D. Harel, "Statecharts: A Visual Formalism for Complex
Systems, " Science of Computer Programming (1987).

– A general paper on statechart-like formalisms: D. Harel.
"On Visual Formalisms," Comm. of the ACM (1988).

• The i-Logix web site (http://www.ilogix.com/fs_papers.htm)
has a set of papers, (you have to register your name, but it
looks like it doesn’t check anything)
– The following looks reasonable at a glance: B.P.

Douglass. State Machines and Statecharts: A White
Paper. Embedded Systems Conference West (1999).

Key idea: hierarchy

OnButtonPushed

OffButtonPushed

Cruise Pause

Resume

Exceed25MPH

…
LockButtonPushed

>25MPH

J-3

Parallel AND-machines

• The state of the overall machine is
represented by one state from each of
the parallel AND machines
– In a cruise control state AND in a speed

state AND in a door lock state

• Transitions can take place in all
substates in parallel
– Events in one substate can cause

transitions in another substate

A few statechart features

• Default entry states for each substate
– Indicated by an arrow with no initial state

• When any of the parallel machines is exited,
the entire machine is exited

• You can have “history” states, which
remember where you were the last time you
were in a machine

• The “STATEMATE semantics” are the
standard semantics
– This is largely a question of which enabled

transitions are taken, and when
– At this level, you surely don’t care

Variants on statecharts

• There are many variants on statecharts
• One is RSML (Leveson et al.), which

allows states to be connected through
a bus as well as pairwise

• RSML also represents transitions
differently, through explicit AND-OR
tables instead of through guards and
conditions on transitions

Too Hot

Move OutJust Moved

Move InReady

Cold

Okay

Hot

All Out

All In

Midway

Temperature Rod ConfigurationRod Movement

On

Off Panic

Temp_Reading External Temperature
Initiate_Move Rod_Move Rod_Config
Move_Finished External Rod_Config
Rod_Updated Rod_Config Rod_Move
Clock_Event External Rod_Move
Temp_Update Temperature Rod_Move

Events

Sample transitions
On Panic

Trigger_Event: Temp_Update
Condition: Temperature in Too Hot
Output Action: Panic_Event

Ready Move In

Trigger_Event: Temp_Update
Condition: Rod_Movement in Ready and Temperature in Hot
Output Action: Initiate_Move

Just Moved Ready

Trigger_Event: Clock_Event
Condition: Rod_Movement in Just_Moved and
 t > t(entered(Just_Moved))+ Move_Delay

Leap of faith

• Statecharts (and variants) can be
used to specify important,
complex systems

J-4

Question

• So we have a big statecharts-like
specification

• How do we know it has properties we
want it to have?
– Ex: is it deterministic?
– Ex: can you ever have the doors unlock by

themselves while the car is moving?
– Ex: can you ever cause an emergency

descent when you are under 500 feet
above ground level?

Standard answers include

• Human inspection
• Simulation
• Analysis

An alternative: model checking

• Evaluate temporal properties
of finite state systems

– Guarantee a property is true
or return a counterexample

– Ex: Is it true that we can never
enter an error state?

– Ex: Are we able to handle a
reset from any state?

• Extremely successfully for
hardware verification

– Intel got into the game after
the FDIV error

• Open question: applicable to
software specifications?

Finite State
Machine

Temporal Logic
Formula

Model
Checker

Yes No

State Transition Graph

• One way to represent a finite state
machine is as a state transition graph
– S is a finite set of states
– R is a binary relation that defines the

possible transitions between states in S
– P is a function that assigns atomic

propositions to each state in S
• e.g., that a specific process holds a lock

• Other representations include regular
expressions, etc.

Example

• Three states
• Transitions as

shown
• Atomic properties a,

b and c

• Given a start state,
you can consider
legal paths through
the state machine

a
b

b
c

a
c

S0

S1

S2

A computation tree

• From a given start
state, you can
represent all
possible paths with
an infinite
computation tree

• Model checking
allows us to answer
questions about this
tree structure

S0

S0

S1

S2S1

S0

S2S1

J-5

Temporal formulae

• Temporal logics allow us
to say things like

–Does some property
hold true globally?

• Top figure

–Does some property
inevitably hold true?

• Bottom figure

–Does some property
potentially hold true?

S0

S0

S1

S2S1

S0

S2S1

S0

S0

S1

S2S1

S0

S2S1

S2

Mutual exclusion example

• N1 & N2, non-critical
regions of Process 1
and 2

• T1 & T2, trying regions
• C1 and C2, critical

regions
• AF(C1) in lightly shaded

state?
– C1 always inevitably

true?
• EF(C1 ∧ C2) in dark

shaded state?
– C1 and C2 eventually

true?

N1/N2

N1/T2T1/N2

C1/N2 T1/T2 T1/T2 N1/C2

T1/C2C1/T2

How does model checking
work? (in brief!)

• An iterative algorithm that labels
states in the transition graph with
formulae known to be true

• For a query Q
– the first iteration marks all subformulae of

Q of length 1
– the second iteration marks them of length

2
– this terminates since the formula is finite

• The details of the logic indeed matter
– But not at this level of description

Example

• Q = T1 ⇒ AF C1
– If Process 1 is trying to acquire the mutex,

then it is inevitably true it will get it
sometime

• Q = ¬T1 ∨ AF C1
– Rewriting with DeMorgan’s Laws

• First, label all the states where T1, ¬T1,
and C1 are true
– These are atomic properties

Example

• Next mark all the
states in which AF
C1 is true, etc.

–The algorithm tracks
states visited using
depth-first search

–Slight variations for
AF, AG, EF, EG, etc.

• At termination,
¬T1 ∨ AF C1 is true
everywhere

–Hence the temporal
property is true for
the state machine

N1/N2
¬ T1

¬ T1 v AF C1

N1/T2
¬ T1

¬ T1 v AF C1

T1/N2
AF C1

¬ T1 v AF C1

C1/N2
¬ T1

AF C1
¬ T1 v AF C1

N1/C2
¬ T1

¬ T1 v AF C1

T1/C2
AF C1

¬ T1 v AF C1

T1/T2
AF C1

¬ T1 v AF C1

C1/T2
¬T1

AF C1
¬ T1 v AF C1

T1/T2
AF C1

¬ T1 v AF C1

Symbolic model checking

• State space can be huge (>21000) for
many systems

• Key idea: use implicit representation
of state space
– Data structure to represent transition

relation as a boolean formula

• Algorithmically manipulate the data
structure to explore the state space

• Key: efficiency of the data structure

J-6

Binary decision diagrams (BDDs)

• “Folded decision tree”
• Fixed variable order
• Many functions have small

BDDs
– Multiplication is a notable

exception

• Can represent
– State machines (transition

functions) and
– Temporal queries

01

1 1

1 10

10

1 1

0

0

x1

x4

x3

x2

Odd Parity

Due to Randy Bryant

BDD-based model checking

• Iterative, fixed-point algorithms that
are quite similar to those in explicit
model checking

• Applying boolean functions to BDDs is
efficient, which makes the underlying
algorithms efficient
– ∧ becomes set intersection, ∨ becomes set

union, etc.

• When the BDDs remain small, that is
– Variable ordering is a key issue

BDD-based successes in HW

• IEEE Futurebus+ cache
coherence protocol

• Control protocol for Philips stereo
components

• ISDN User Part Protocol
• ...

Software model checking

• Finite state software specifications
– Reactive systems (avionics, automotive,

etc.)
– Hierarchical state machine specifications

• Not intended to help with proving
consistency of specification and
implementation
– Rather, checking properties of the

specification itself

Why might it fail?

• Software is often specified with infinite
state descriptions

• Software specifications may be
structured differently from hardware
specifications
– Hierarchy
– Representations and algorithms for model

checking may not scale

Our approach at UW—try it!

• Applied model checking to the specification
of TCAS II
– Traffic Alert and Collision Avoidance System

• In use on U.S. commercial aircraft
• http://www.faa.gov/and/and600/and620/newtcas.htm

– FAA adopted specification
– Initial design and development by Leveson et al.

• Later applied it to a statecharts description of
an electrical power distribution system model
of the B777
– I can provide examples and papers

J-7

TCAS
• Warn pilots of traffic

– Plane to plane, not through ground controller
– On essentially all commercial aircraft

• Issue resolution advisories only
– Vertical resolution only
– Relies on transponder data

TCAS specification

• Irvine Safety Group (Leveson et al.)
– Specified in RSML as a research project

• RSML is in the Statecharts family of hierarchical
state machine description languages

– FAA adopted RSML version as official

• Specification is about 400 pages long
• This study uses: Version 6.00, March

1993
– Not the current FAA version

TCAS—high-level structure

Own_Aircraft Other_Aircraft

On

Own_Aircraft
Sensitivity levels, Alt_Layer, Advisory_Status

Other_Aircraft
Tracked, Intruder_State, Range_Test, Crossing,
Sense Descend/Climb

Using SMV
• SMV is a BDD-based model checker
• It checks CTL formulas

–A specific temporal logic

TCAS
(RSML)

Properties
(CTL)

Model Checker
(SMV)

Partial TCAS
(SMV)

Iterative process

• Iterate SMV version of
specification

• Clarify and refine temporal
formula

• Model environment more
precisely

• Refine specification

Use of non-determinism

• Inputs from environment
– Altitude := {1000…8000}

• Simplification of functions
– Alt_Rate := 0.25*(Alt_Baro-ZP)/Delta_t

– Alt_Rate := {-2000…2000}

• Unmodelled parts of specification
– States of Other_Aircraft treated as non-

deterministic input variables

J-8

Translating RSML to SMV

On

Off

MODULE main
VAR

state:{ON,OFF};
on_event: boolean;
off_event: boolean;

ASSIGN
init(state) := OFF;
next(state) := case

state = ON &
 off_event: OFF;

state = OFF &
 on_event: ON;

1 : state;
esac;

State encoding

A B

D F

E G

S

C

T U

• Flatten nested AND
and nested OR states

• One variable for each
OR state

– An enumerated type
of the alternatives

VAR
S: {A,B,C};
T: {D,E};
U: {F,G};

Events

• External—interactions with
environment

• Internal—micro steps
• Synchrony hypothesis

– External event arrives
– Triggers cascade of internal events (micro

steps)
– Stability reached before next external

event

• Technical issues with micro steps

Non-deterministic transitions

• A machine is deterministic if at
most one of T_A_B, T_A_C, etc. can
be true
– T_A_B represents the conditions

under which a transition is taken
from state A to state B

– Else non-deterministic

Checking properties

• Initial attempts to check any property
generated BDDs of over 200MB

• First successful check took 13 hours
– Was reduced to a few minutes

• Partitioned BDDs
• Reordered variables
• Implemented better search for

counterexamples

Property checking

• Domain independent properties
– Deterministic state transitions
– Function consistency

• Domain dependent
– Output agreement
– Safety properties

• We used SMV to investigate some of
these properties on TCAS’
Own_Aircraft module

J-9

Disclaimer

The intent of this work was to evaluate
symbolic model checking of state-based
specifications, not to evaluate the TCAS II
specification. Our study used a
preliminary version of the specification,
version 6.00, dated March, 1993. We did
not have access to later versions, so we do
not know if the issues identified here are
present in later versions.

Deterministic transitions

• Do the same conditions allow for non-
deterministic transitions?

• Inconsistencies were found earlier by
other methods [Heimdahl and Leveson]
– Identical conditions allowed transitions

from Sensitivity Level 4 to SL 2 or to SL 5

• Our formulae checked for all possible
non-determinism; we found this case,
too

Note: Earlier version of TCAS spec

V_254a := MS = TA_RA | MS = TA_only | MS =3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_254b := ASL = 2 | ASL = 3 | ASL = 4 | ASL = 5 |
 ASL = 6 | ASL = 7;
T_254 := (ASL = 2 & V_254a) | (ASL = 2 & MS = TA_only) |
 (V_254b & LG = 2 & V524a);
V_257a := LG = 5 | LG = 6 | LG = 7 | LG = none;
V_257b := MS = TA_RA | MS = 5 || MS = 6 | MS = 7;
V_257c := MS = TA_RA | MS = TA_only | MS = 3 | MS = 4 |
 MS = 5 | MS = 6 | MS = 7;
V_257d := ASL = 5 | ASL = 6 | ASL = 7;
T_257 := (ASL = 5 | V_257a | V_257b) |
 (ASL = 5 & MS = TA_only) |
 (ASL = 5& LG = 2 & V_257c) |
 (V_257d & LG = 5 & V_257b) |
 (V_257d & V_257a & MS = 5);

Function consistency

• Many functions are
defined in terms of
cases

• A function is
inconsistent if two
different conditions
Ci and Cj and be true
simultaneously

AG !((C1 & C2) |
 (C1 & C2) |
 (C2 & C3))

 V1 if C1
 V2 if C2
 V3 if C3

F =

Display_Model_Goal

• Tells pilot desired rate of altitude
change

• Checking for consistency gave a
counterexample
– Other_Aircraft reverse from an
Increase-Climb to an Increase-
Descend advisory

– After study, this is only permitted in our
non-deterministic modeling of
Other_Aircraft

– Modeling a piece of Other_Aircraft’s
logic precludes this counterexample

J-10

Output agreement

• Related outputs should be consistent
– Resolution advisory

•Increase-Climb, Climb, Descend,
Increase-Descend

– Display_Model_Goal
• Desired rate of altitude change
• Between -3000 ft/min and 3000 ft/min

– Presumably, on a climb advisory,
Display_Model_Goal should be
positive

Output agreement check

• AG (RA = Climb -> DMG > 0)
– If Resolution Advisory is Climb, then
Display_Model_Goal is positive

• Counterexample was found
– t0 : RA = Descend, DMG = -1500

– t1 : RA = Increase-Descend, DMG = -2500

– t2 : RA = Climb, DMG = -1500

Limitations

• Can’t model all of TCAS
– Pushing limits of SMV (more than 200 bit

variables is problematic)
– Need some non-linear arithmetic to model

parts of Other_Aircraft
• New result that represents constraints as BDD

variables and uses a constraint solver

• How to pick appropriate formulae to
check?

Whence formulae?

“There have been two pilot reports
received which indicated that TCAS
had issued Descend RA's at
approximately 500 feet AGL even
though TCAS is designed to inhibit
Descent RAs at 1,000 feet AGL. All
available data from these encounters
are being reviewed to determine the
reason for these RAs.” –TCAS web

Whence formulae?

• Jaffe, Leveson et al. developed criteria that
specifications of embedded real-time
systems should satisfy, including:
– All information from sensors should be used
– Behavior before startup, after shutdown and during

off-line processing should be specified
– Every state must have a transition defined for every

possible input (including timeouts)
• Predicates on the transitions must yield deterministic

behavior

• Essentially a check-list, but a very useful one

What about infinite state?

• Model checking does not apply to infinite
state specifications
– The iterative algorithm will not reach a fixpoint

• Theorem proving applies well to infinite state
specifications, but has generally proved to be
unsatisfactory in practice

• One approach is to abstract infinite state
specifications into finite state ones
– Doing this while preserving properties is hard

• D. Jackson et al.’s Nitpick approach
– Find counterexamples (errors), but don’t “prove”

anything

J-11

Model checking wrap up

• The goal of model checking is to allow finite
state descriptions to be analyzed and shown
to have particular desirable properties
– Won’t help when you don’t want or need finite state

descriptions
– Definitely added value when you do, but it’s not

turnkey yet
• There’s still a real art in managing model checking

– Definitely feasible on modest sized systems

I know this was quick

• My goal isn’t to make you into model
checking experts
– But it might titillate one or two of you to

learn more

• But rather to understand the sketches
of what model checking is and why it
is so promising for checking some
classes of specifications

It’s show time!

• Michael Jackson’s keynote address at
the 17th International Conference on
Software Engineering (ICSE 17)
– 1000 researchers, educators, and

practitioners
– Other keynoters: Fred Brooks, Michael

Cusamano

• Discussion on the mailing list…

J-12

J-13

J-14

J-15

J-16

J-17

J-18

J-19

Good night

• Hope you enjoyed your night at
the movies with Michael Jackson

• Let’s leave discussion to the
mailing list

