
J-1

CSE584: Software Engineering
Lecture 4: Design (A)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Design

• First lecture (tonight)
– Basic issues in design, including some

historical background
– Well-understood techniques

• Information hiding, layering, event-based
techniques

• Second lecture (next week)
• More recent issues in design

– Problems with information hiding (and
ways to overcome them)

– Architecture, patterns, frameworks

Outline

• Basic concepts
• Information hiding
• Layered systems
• Design problems you face
• Implicit invocation design

Very High-Level View

• Requirements define the
clients’ view

– What the system is
supposed to do

– Focuses on external
behavior

• Design captures the
developers’ view

– How the requirements are
realized

– Defines the internal
structure of the solution

• But: “What” vs. “How”
• Also, reminiscent of the

Brian Cantwell Smith
diagram in Jackson’s video

Requirements

Design

Implementation

Correspondence

CorrespondenceCorrespondence

Correspondence

Complexity

“Software entities are more complex for
their size than perhaps any other
human construct, because no two
parts are alike (at least above the
statement level). If they are, we make
the two similar parts into one… In this
respect software systems differ
profoundly from computers, buildings,
or automobiles, where repeated
elements abound.” —Brooks, 1986

Continuous & iterative

• High-level (“architectural”) design
– What pieces?
– How connected?

• Low-level design
– Should I use a hash table or binary search tree?

• Very low-level design
– Variable naming, specific control constructs, etc.
– About 1000 design decisions at various levels are

made in producing a single page of code



J-2

Multiple design choices

• There are multiple (perhaps unbounded)
designs that satisfy (at least the functional)
aspects of a given set of requirements

• How does one choose among these
alternatives?
– How does one even identify the alternatives?
– How does one reject most bad choices quickly?
– What criteria distinguish good choices from bad

choices?

What criteria?

• In general, there are three high level
answers to this question: and, it is very
difficult to answer precisely

1.Satisfying functional and performance
requirements
• Maybe this is too obvious to include
• Often not achieved, though: but because of

design choices? Garlan: yes!

2.Managing complexity
3.Accommodating future change

1. Managing complexity

• “The technique of mastering complexity has
been known since ancient times: Divide et
impera (Divide and Rule).” —Dijkstra, 1965

• “…as soon as the programmer only needs to
consider intellectually manageable programs,
the alternatives he is choosing from are
much, much easier to cope with.” —Dijkstra, 1972

• The complexity of the software systems we
are asked to develop is increasing, yet there
are basic limits upon our ability to cope with
this complexity. How then do we resolve this
predicament?” —Booch, 1991

Divide and conquer

• We have to decompose large systems to be
able to build them
– The “modern” problem of composing systems from

pieces is equally or more important
• It’s not modern, though: we’ve had to compose for as

long as we have decomposed
– And closely related to decomposition in many ways

• For software, decomposition techniques are
distinct from those used in physical systems
– Fewer constraints are imposed by the material
– Shanley principle?

Composition

• “Divide and conquer. Separate your
concerns. Yes. But sometimes the
conquered tribes must be reunited
under the conquering ruler, and the
separated concerns must be combined
to serve a single purpose.”

—M. Jackson, 1995
• Jackson’s view of composition as

printing with four-color separation
• Remember, composition in programs

is not as easy as conjunction in logic

Benefits of decomposition

• Decrease size of
tasks

• Support independent
testing and analysis

• Separate work
assignments

• Ease understanding

• In principle, can
significantly reduce
paths to consider by
introducing one interface



J-3

Which decomposition?

• How do we select a decomposition?
– We determine the desired criteria
– We select a decomposition (design) that will

achieve those criteria
• In theory, that is; in practice, it’s hard to

– Determine the desired criteria with precision
– Tradeoff among various conflicting criteria
– Figure out if a design satisfies given criteria
– Find a better one that satisfies more criteria

• In practice, it’s easy to
– Build something designed pretty much like the last

one
– This has benefits, too: understandability,

properties of the pieces, etc.

Structure

• The focus of most design approaches
is structure

• What are the components and how are
they put together?

• Behavior is important, but largely
indirectly
– Satisfying functional and performance

requirements

So what happens?

• People often buy into a particular
approach or methodology
– Ex: structured analysis and design, object-oriented

design, JSD, Hatley-Pirbai, etc.

• “Beware a methodologist who is more
interested in his methodology than in
your problem.” —M. Jackson

Conceptual integrity

• Brooks and others assert that conceptual
integrity is a critical criterion in design
– “It is better to have a system omit certain

anomalous features and improvements, but to
reflect one set of design ideas, than to have one
that contains many good but independent and
uncoordinated ideas.” —Brooks, MMM

• Such a design often makes it far easier to
decide what is easy and reasonable to do as
opposed to what is hard and less reasonable
to do
– This is not always what management wants to hear

2. Accommodating change

• “…accept the fact of change as a way
of life, rather than an untoward and
annoying exception.” —Brooks, 1974

• Software that does not change
becomes useless over time. —Belady
and Lehman

• Internet time makes the need to
accommodate change even more
apparent

Anticipating change

• It is generally believed that to
accommodate change one must
anticipate possible changes
– Counterpoint: Extreme Programming

• By anticipating (and perhaps
prioritizing) changes, one defines
additional criteria for guiding the
design activity

• It is not possible to anticipate all
changes



J-4

Rationalism vs. empiricism

Brooks’ 1993 talk
“The Design of Design”

• rationalism — the doctrine that
knowledge is acquired by reason
without resort to experience [WordNet]

• empiricism — the doctrine that
knowledge derives from experience
[WordNet]

Examples

Life
–Aristotle vs. Galileo
–France vs. Britain
–Descartes vs.

Hume
–Roman law vs.

Anglo-Saxon law

Software (Wegner)

– Prolog vs. Lisp
– Algol vs. Pascal
– Dijkstra vs. Knuth
– Proving programs

vs. testing
programs

Brooks’ view

• Brooks says he is a “thoroughgoing, died-in-
the-wool empiricist.

• “Our designs are so complex there is no
hope of getting them right first time by pure
thought. To expect to is arrogant.

• “So, we must adopt design-build processes
that incorporate evolutionary growth …
– “Iteration, and restart if necessary
– “Early prototyping and testing with real users”

• Maybe this is more an issue of requirements
and specification, but I think it applies to
design, too
– “Plan to throw one away, you will anyway.”

Properties of design

• Cohesion
• Coupling
• Complexity
• Correctness
• Correspondence

• Makes designs “better”, one presumes
• Worth paying attention to

Cohesion

• The reason that elements are found
together in a module
– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent
is useful

• During maintenance, one of the major
structural degradations is in cohesion
– Need for “logical remodularization” (in a

future paper we’ll read)

Coupling

• Strength of interconnection between
modules

• Hierarchies are touted as a wonderful
coupling structure, limiting
interconnections
– But don’t forget about composition, which

requires some kind of coupling

• Coupling also degrades over time
– “I just need one function from that

module…”
– Low coupling vs. no coupling



J-5

Unnecessary coupling hurts

• Propagates effects of changes more
widely

• Harder to understand interfaces
(interactions)

• Harder to understand the design
• Complicates managerial tasks
• Complicates or precludes reuse

It’s easy to...

• ...reduce coupling by calling a system
a single module

• …increase cohesion by calling a
system a single module

⇒ No satisfactory measure of coupling
– Either across modules or across a system

Complexity

• Well, yeah, simpler designs are better,
all else being equal

• But, again, no useful measures of
design/program complexity exist
– Although there are dozens of such

measures
– My understanding is that, to the first order,

most of these measures are linearly
related to “lines of code”

Correctness

• Well, yeah
• Even if you “prove” modules are

correct, composing the modules’
behaviors to determine the system’s
behavior is hard

• Leveson and others have shown
clearly that a system can fail even
when each of the pieces work properly
– Many systems have “emergent” properties

Correspondence

• “Problem-program
mapping”

• The way in which the
design is associated with
the requirements

• The idea is that the
simpler the mapping, the
easier it will be to
accommodate change in
the design when the
requirements change

• M. Jackson: problem
frames

–In the style of Polya

Requirements

Design

Implementation

Functional decomposition

• Divide-and-conquer based on functions
input;
compute;

output

• Then proceed to decompose compute
• This is stepwise refinement (Wirth, 1971)
• There is an enormous body of work in this

area, including many formal calculi to
support the approach
– Closely related to proving programs correct

• More effective in the face of stable
requirements



J-6

Question

• To what degree do you consider your
systems
– as having modules?
– as consisting of a set of files?

• This is a question of physical vs.
logical structure of programs
– In some languages/environments, they are

one and the same
– Ex: Smalltalk-80

Physical structure

• Almost all the literature focuses on
logical structures in design

• But physical structure plays a big role
in practice
– Sharing
– Separating work assignments
– Degradation over time

• Why so little attention paid to this?

Information hiding

• Information hiding is perhaps the most
important intellectual tool developed
to support software design [Parnas
1972]
– Makes the anticipation of change a

centerpiece in decomposition into
modules

• Provides the fundamental motivation
for abstract data type (ADT) languages
– And thus a key idea in the OO world, too

• The conceptual basis is key

Basics of information hiding

• Modularize based on anticipated change
– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations
– Implementations capture decisions likely to change
– Interfaces capture decisions unlikely to change
– Clients know only interface, not implementation
– Implementations know only interface, not clients

• Modules are also work assignments

Anticipated changes

• The most common anticipated change
is “change of representation”
– Anticipating changing the representation

of data and associated functions (or just
functions)

– Again, a key notion behind abstract data
types

• Ex:
– Cartesian vs. polar coordinates; stacks as

linked lists vs. arrays; packed vs.
unpacked strings

Claim

• We less frequently change representations
than we used to
– We have significantly more knowledge about data

structure design than we did 25 years ago
– Memory is less often a problem than it was

previously, since it’s much less expensive

• Therefore, we should think twice about
anticipating that representations will change
– This is important, since we can’t simultaneously

anticipate all changes
– Ex: Changing the representation of null-terminated

strings in Unix systems wouldn’t be sensible
• And this doesn’t represent a stupid design decision



J-7

Other anticipated changes?

• Information hiding isn’t only ADTs
• Algorithmic changes

– (These are almost always part and parcel
of ADT-based decompositions)

– Monolithic to incremental algorithms
– Improvements in algorithms

• Replacement of hardware sensors
– Ex: better altitude sensors

• More?

Ubiquitous computing domain

• Portolano is a UW CSE project on this topic
– Devices everywhere, handhelds, on-body devices,

automated laboratories, etc.

• The set of anticipated changes is
significantly different than in many other
domains
– Data is more stable than computations
– Must accommodate diversity in communication

speed, reliability, etc.

• Interesting domain for information hiding

Central premise I

• We can effectively anticipate changes
– Unanticipated changes require changes to

interfaces or (more commonly)
simultaneous changes to multiple
modules

• How accurate is this premise?
– We have no idea
– There is essentially no research about

whether anticipated changes happen
– Nor do we have disciplined ways to figure

out how to better anticipate changes

The A-7 Project

• In the late 1970’s, Parnas led a project
to redesign the software for the A-7
flight program
– One key aspect was the use of information

hiding

• The project had successes, including a
much improved specification of the
system and the definition of the SCR
requirements language

• But little data about actual changes
was gathered

Central premise II

• Changing an implementation is the
best change, since it’s isolated

• This may not always be true
– Changing a local implementation may not

be easy
– Some global changes are straightforward

• Mechanically or systematically

– VanHilst’s work showed an alternative
• Using parameterized classes with a deferred

supertype [ISOTAS, FSE, OOPSLA]

– Griswold’s work on information
transparency

Central premise III

• The semantics of the module must
remain unchanged when
implementations are replaced
– Specifically, the client should not care how

the interface is implemented by the
module

• But what captures the semantics of the
module?
– The signature of the interface?

Performance? What else?



J-8

Central premise IV

• One implementation can satisfy
multiple clients
– Different clients of the same interface that

need different implementations would be
counter to the principle of information
hiding

• Clients should not care about implementations,
as long as they satisfy the interface

– Kiczales’ work on open implementations

Central premise V

• It is implied that information
hiding can be recursively applied

• Is this true?
• If not, what are the

consequences?

Information hiding reprise

• It’s probably the most important
design technique we know

• And it’s broadly useful
• It raised consciousness about change
• But one needs to evaluate the

premises in specific situations to
determine the actual benefits (well, the
actual potential benefits)

Information Hiding and OO

• Are these the same? Not really
– OO classes are chosen based on the

domain of the problem (in most OO
analysis approaches)

– Not necessarily based on change

• But they are obviously related
(separating interface from
implementation, e.g.)

• What is the relationship between sub-
and super-classes?

Layering [Parnas 79]

• A focus on information hiding modules
isn’t enough

• One may also consider abstract
machines
– In support of program families

• Systems that have “so much in common that it
pays to study their common aspects before
looking at the aspects that differentiate them”

• Still focusing on anticipated change

The uses relation

• A program A uses a program B if the
correctness of A depends on the
presence of a correct version of B

• Requires specification and
implementation of A and the
specification of B

• Again, what is the “specification”?
The interface? Implied or informal
semantics?
– Can uses be mechanically computed?



J-9

uses vs. invokes

• These
relations often
but do not
always
coincide

• Invocation
without use:
name service
with cached
hints

• Use without
invocation:
examples?

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

ipAddr := lookup(hostName)

endif

Parnas’ observation

• A non-hierarchical uses relation
makes it difficult to produce
useful subsets of a system
– It also makes testing difficult
– (What about upcalls?)

• So, it is important to design the
uses relation

Criteria for uses(A,B)

• A is essentially simpler because it
uses B

• B is not substantially more complex
because it does not use A

• There is a useful subset containing B
but not A

• There is no useful subset containing A
but not B

Layering in THE
(Dijkstra’s layered OS)

• OK, those of you who took OS
• How was layering used, and how

does it relate to this work?

• (For thinking about off-line, or for
email discussion)

Modules and layers interact?

• Information
hiding
modules
and layers
are distinct
concepts

• How and
where do
they overlap
in a system?

Process ADT

Segment ADT

Process
Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

Language support

• We have lots of language support for
information hiding modules
– C++ classes, Ada packages, etc.

• We have essentially no language
support for layering
– Operating systems provide support,

primarily for reasons of protection, not
abstraction

– Big performance cost to pay for “just”
abstraction



J-10

Implicit invocation

• Components announce
events that other
components can choose
to respond to

• Yellow and red register
interest in an event from
blue
– When blue announces

that event, yellow and
red are invoked

• In implicit invocation, the
invokes relation is the
inverse of the names
relation

• Invocation does not
require ability to name

Old II mechanisms

• Field [Reiss], DEC FUSE, HP Softbench, etc.
– Components announce events as ASCII messages
– Components register interest using regular

expressions
– Centralized multicast message server

• Smalltalk’s Model-View-Controller
– Registering with objects
– Separating UI views from internal models
– May request permission to change

New II mechanisms:
or extensive uses of them

• JDK’s
– Different versions have somewhat

different event models

• Java beans, Swing, …
• CORBA and COM

Objective

• Most, if not all, of you are at least
comfortable with using events
– Probably primarily in the context of

existing components and frameworks

• So, what’s the issue to cover?
• Several

– Thinking of implicit invocation as more
than “just” events

– Identifying some concrete software
engineering reasons to use it

– Identifying some limitations

Not just indirection

• There is often confusion between implicit
invocation and indirect invocation
– Calling a virtual function is a good example of

indirect invocation
• The calling function doesn’t know the precise callee,

but it knows it is there and that there is only one
• Not true in general in implicit invocation

• An announcing component should not use
(in the Parnas sense) any responding
components
– This is extremely difficult to define precisely
– Roughly, the postcondition of the announcing

component should not depend on any computation
of the implicitly invoked components

Mediators

• One style of using implicit invocation
is the use of mediators [Sullivan & Notkin]

• This approach combines events with
entity-relationship designs

• The intent is to ease the development
and evolution of integrated systems
– Manage the coupling and isolate

behavioral relationships between
components



J-11

Experience

• A radiation treatment planning (RTP) system
(Prism) was designed and built using this
technique
– By a radiation oncologist [Kalet]
– A third generation RTP system
– In clinical use at UW and several other major

research hospitals
– http://www.radonc.washington.edu/physics/prism/
– See the screenshots on next slides

Example from paper

• Two set components,
S1 and S2

• Ensure that the sets
maintain the same
elements
– Can add or delete

elements from either set

• On right is the
mediator approach

• ADT and hardwired
alternatives discussed
in paper

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

Mediator issues

• Must avoid circularity
• Events are first-class elements in

interfaces
– “interface” and “outerface”

• Makes many changes easier
– lazy equivalence
– allow size of the sets to be changed

directly
– …



J-12

Mediator: with lazy update

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

Mediators: lazy and count

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

C

Register

Count

Call

Assessment

• For some classes of systems and
changes, mediator-based designs
seem attractive

• Lots of outstanding issues
– Circularities in relations
– Ordering of mediators
– Distributed and concurrent variants
– Reasoning (even informally) about

systems built with implicit invocation
• Even “just” debugging

Design I wrap-up

• High-level issues in design
– Managing complexity, accommodating

change, conceptual integrity

• Information hiding
• Layering
• Implicit invocation

– Mediator-based design

• Problems you face

Next week

• Open implementation
– Aspect-oriented programming

• Software architecture
• Patterns
• Frameworks
• A bit on composition of systems


