
J-1

CSE584: Software Engineering
Lecture 6: Evolution (A)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Outline

• Software change
– Basic background
– Approaches to change

• Alternative approaches to
maintenance
– Introduction
– Source models
– Visualizing source models

Software evolution

• Software changes
– Software maintenance
– Software evolution
– Incremental development

• The objective is to use an existing
code base as an asset
– Cheaper and better to get there from here,

rather than starting from scratch
– Anyway, where would you aim for with a

new system? (We’ve discussed this a bit)

A legacy

• Merriam-Webster on-line dictionary
– “a gift by will especially of money or other personal

property”

– “something transmitted by or received from an
ancestor or predecessor or from the past”

• The usual joke is that in anything but
software, you’d love to receive a legacy
– Maybe we feel the same way about inheritance, too,

especially multiple inheritance

Change

• “There is in the worst of fortune the best of
chances for a happy change” —Euripides

• He who cannot dance will say, “The drum is
bad” —Ashanti proverb

• “The ruling power within, when it is in its
natural state, is so related to outer
circumstances that it easily changes to
accord with what can be done and what is
given it to do” —Marcus Aurelius

• “Change in all things is sweet” —Aristotle

Why does it change?

• Software changes does not change primarily
because it doesn’t work right
– Maintenance in software is different than

maintenance for automobiles

• But rather because the technological,
economic, and societal environment in which
it is embedded changes

• This provides a feedback loop to the software
– The software is usually the most malleable link in

the chain, hence it tends to change
• Counterexample: Space shuttle astronauts have

thousands of extra responsibilities because it’s safer
than changing code

J-2

Kinds of change

• Corrective maintenance
– Fixing bugs in released

code
• Adaptive maintenance

– Porting to new hardware
or software platform

• Perfective maintenance
– Providing new functions

• Old data, focused on IT
systems…now?

0

10

20

30

40

50

60

70

Lientz &
Swanson 1980

Corrective

Adaptive

Perfective

High cost, long time

• Gold’s 1973 study
showed the fraction
of programming
effort spent in
maintenance

• For example, 22% of
the organizations
spent 30% of their
effort in maintenance

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

Total life cycle cost

• Lientz and Swanson determined that at
least 50% of the total life cycle cost is
in maintenance

• There are several other studies that
are reasonably consistent

• General belief is that maintenance
accounts for somewhere between 50-
75% of total life cycle costs

Open question

• How much maintenance cost is
“reasonable?”
– Corrective maintenance costs are

ostensibly not “reasonable”
– How much adaptive maintenance cost is

“reasonable”?
– How much perfective maintenance cost is

“reasonable”?

• Measuring “reasonable” costs in terms
of percentage of life cycle costs
doesn’t make sense

High-level answer

• For perfective maintenance, the
objective should be for the cost of the
change in the implementation to be
proportional to the cost of the change
in the specification (design)
– Ex: Allowing dates for the year 2000 is (at

most) a small specification change
– Ex: Adding call forwarding is a more

complicated specification change
– Ex: Converting a compiler into an ATM

machine is …

Aside: reuse

• There’s been some discussion of reuse on
the mailing list

• I. Jacobson, M. Griss, P. Jonsson. Software
Reuse : Architecture Process and
Organization for Business Success (1997)
– Among other things, they argue that reuse cannot

be done effectively bottom-up: it requires a change
in culture, reward structures, and goals

• Patterns vs. reuse: my view is that they are
both attempting to increase productivity, but
in different (albeit somewhat related) ways
– Reuse: taking advantage of assets
– Patterns: raising the notational/thought level

J-3

(Common) Observations

• Maintainers often get less respect than
developers

• Maintenance is generally assigned to
the least experienced programmers

• Software structure degrades over time
• Documentation is often poor and is

often inconsistent with the code

• Is there any relationship between
these?

Laws of Program Evolution
3URJUDP�(YROXWLRQ��3URFHVVHV�RI�6RIWZDUH�&KDQJH

(Lehman & Belady)

• Law of continuing
change

• “A large program that
is used undergoes
continuing change or
becomes
progressively less
useful.”

–Analogies to biological
evolution have been
made; the rate of
change in software is
far faster

• P-type programs
–Well-defined, precisely

specified
–The challenge is

efficient implementation
–Ex: sort

• E-type programs
– Ill-defined, fit into an

ever-changing
environment

–The challenge is
managing change

• Also, S-type programs
–Ex: chess

Law of increasing complexity

• “As a large program is continuously
changed, its complexity, which reflects
deteriorating structure, increases
unless work is done to maintain or
reduce it.”
– Complexity, in part, is relative to a

programmer’s knowledge of a system
• Novices vs. experts doing maintenance

– Cleaning up structure is done relatively
infrequently

• Even with the recent interest in refactoring, this
seems true. Why?

Reprise

• The claim is that if you measure any
reasonable metric of the system
– Modules modified, modules created, modules

handled, subsystems modified, …

• and then plot those against time (or releases)
• Then you get highly similar curves regardless

of the actual software system
• A zillion graphs on

http://www.doc.ic.ac.uk/~mml/feast1/

Statistically regular growth

• “Measures of [growth] are cyclically
self-regulating with statistically
determinable trends and invariances.”
– (You can run but you can’t hide)

• There’s a feedback loop

– Based on data from OS/360 and some
other systems

– Ex: Content in releases decreases, or time
between releases increases

• Is this related to Brooks’ observation that
adding people to a late project makes it later?

And two others

• “The global activity rate in a large
programming project is invariant.”

• “For reliable, planned evolution, a
large program undergoing change
must be made available for regular
user execution at maximum intervals
determined by its net growth.”
– This is related to “daily builds”

J-4

Open question

• Are these “laws” of Belady and Lehman
actually inviolable laws?

• Could they be overcome with tools,
education, discipline, etc.?

• Could their constants be fundamentally
improved to give significant improvements in
productivity?
– Recently Greenspan and others have claimed that

IT has fundamentally changed the productivity of
the economy: “The synergistic effect of new
technology is an important factor underlying
improvements in productivity.”

Approaches to reducing cost

• Design for change (proactive)
– Information hiding, layering, open

implementation, aspect-oriented
programming, etc.

• Tools to support change (reactive)
– grep, etc.
– Reverse engineering, program

Approaches to reducing cost

• Improved documentation (proactive)
– Discipline, stylized approaches
– Parnas is pushing this very hard, using a

tabular form of specifications
– Literate programming

• Reducing bugs (proactive)
– Many techniques, some covered later in

the quarter

• Increasing correctness of
specifications (proactive)

• Others?

Program understand &
comprehension

• Definition: The task of building
mental models of the underlying
software at various abstraction
levels, ranging from models of the
code itself to ones of the underlying
application domain, for
maintenance, evolution, and re-
engineering purposes [H. Müller]

Various strategies

• Top-down
– Try to map from the application domain to the code

• Bottom-up
– Try to map from the code to the application domain

• Opportunistic: mix of top-down and bottom-
up

• I’m not a fan of these distinctions, since it
has to be opportunistic in practice
– Perhaps with a really rare exception

Did you try to understand?

• “The ultimate goal of research in program
understanding is to improve the process of
comprehending programs, whether by
improving documentation, designing better
programming languages, or building
automated support tools.” —Clayton,
Rugaber, Wills

• To me, this definition (and many, many
similar ones) miss a key point: What is the
programmer’s task?

• Furthermore, most good programmers seem
to be good at knowing what they need to
know and what they don’t need to know

J-5

A scenario

• I’m about to walk through a simple
scenario or two

• The goal isn’t to show you “how” to
evolve software

• Rather, the goal is to try to increase
some of the ways in which you think
during software evolution

When assigned a task to modify
an existing software system,
how does a software engineer
choose to proceed?

A view of maintenance

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned
Task

? ? ? ? ?

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

Sample (simple) task

• You are asked to update an application in
response to a change in a library function

• The original library function is
– assign(char* to, char* from, int cnt = NCNT)

– Copy cnt characters from to into from

• The new library function is
– assign(char* to, char* from, int pos,

 int cnt = NCNT)

– Copy cnt characters starting at pos from to into
from

• How would you make this change? (In
groups)

Recap: example

• What information did you need?
• What information was available?
• What tools produced the information?

– Did you think about other pertinent tools?

• How accurate was the information?
– Any false information? Any missing true

information?

• How did you view and use the
information?

• Can you imagine other useful tools?

Source models

• Reasoning about a maintenance task is often
done in terms of a model of the source code

–Smaller than the source, more focused than the
source

• Such a source model captures one or more
relations found in the system’s artifacts

Document

Document

Document

Document

Document

Document

(a,b)
(c,d)
(c,f)
(a,c)

...
(d,f)
(g,h)

Extraction Tool

Example source models

• A calls graph
– Which functions call which other functions?

• An inheritance hierarchy
– Which classes inherit from which other classes?

• A global variable cross-reference
– Which functions reference which globals?

• A lexical-match model
– Which source lines contain a given string?

• A def-use model
– Which variable definitions are used at which use

sites?

J-6

Combining source models

• Source models may be produced by
combining other source models using
simple relational operations; for
example,
– Extract a source model indicating which

functions reference which global variables
– Extract a source model indicating which

functions appear in which modules
– Join these two source models to produce

a source model of modules referencing
globals

Extracting source models

• Source models are extracted using
tools

• Any source model can be extracted in
multiple ways
– That is, more than one tool can produce a

given kind of source model

• The tools are sometimes off-the-shelf,
sometimes hand-crafted, sometimes
customized

Program databases

• There are many projects in which a program
database is built, representing source models
of a program

• They vary in many significant ways
– The data model used (relational, object-oriented)
– The granularity of information

• Per procedure, per statement, etc.
– Support for creating new source models

• Operations on the database, entirely new ones
– Programming languages supported

Three classic examples

• CIA/CIA++, ATT Research (Chen et al.)
– Relational, C/C++
– http://www.research.att.com/sw/tools/reuse/
– CIAO, a web-based front-end for program database

access

• Desert, Brown University (Reiss)
– Uses Fragment integration

• Preserves original files, with references into them
– http://www.cs.brown.edu/software/desert/
– Uses FrameMaker as the editing/viewing engine

• Rigi (support for reverse engineering)
– http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml

Information characteristics

ideal conservative

optimistic approximate

no false positives false positives

no
 fa

ls
e

ne
ga

tiv
es

fa
ls

e
ne

ga
tiv

es

Ideal source models

• It would be best if every source model
extracted was perfect
– All entries are true and no true entries are omitted

• For some source models, this is possible
– Inheritance, defined functions, #include structure,

etc.

• For some source models, achieving the ideal
may be difficult in practice
– Ex: computational time is prohibitive in practice

• For many other interesting source models,
this is not possible
– Ideal call graphs, for example, are uncomputable

J-7

Conservative source models

• These include all true information and
maybe some false information, too

• Frequently used in compiler
optimization, parallelization, in
programming language type inference,
etc.
– Ex: never misidentify a call that can be

made or else a compiler may translate
improperly

– Ex: never misidentify an expression in a
statically typed programming language

Optimistic source models

• These include only truth but may omit
some true information

• Often come from dynamic extraction
• Ex: In white-box code coverage in

testing
– Indicating which statements have been

executed by the selected test cases
– Others statements may be executable with

other test cases

Approximate source models

• May include some false information
and may omit some true information

• These source models can be useful for
maintenance tasks
– Especially useful when a human engineer

is using the source model, since humans
deal well with approximation

– It’s “just like the web!”

• Turns out many tools produce
approximate source models (more on
this later)

Static vs. dynamic

• Source model extractors can work
– statically, directly on the system’s

artifacts, or
– dynamically, on the execution of the

system, or
– a combination of both

• Ex:
– A call graph can be extracted statically by

analyzing the system’s source code or can
be extracted dynamically by profiling the
system’s execution

Must iterate

• Usually, the engineer must iterate to get a
source model that is “good enough” for the
assigned task

• Often done by inspecting extracted source
models and refining extraction tools

• May add and combine source models, too

Document

Document

Document

Document

Document

Document

(a,b)
(c,d)
(c,f)
(a,c)
...

(d,f)
(g,h)

Extraction Tool

Another maintenance task

• Given a software system, rename a
given variable throughout the system
– Ex: angle should become diffraction
– Probably in preparation for a larger task

• Semantics must be preserved
• This is a task that is done infrequently

– Without it, the software structure degrades
more and more

J-8

What source model?

• Our preferred source model for the
task would be a list of lines (probably
organized by file) that reference the
variable angle

• A static extraction tool makes the most
sense
– Dynamic references aren’t especially

pertinent for this task

Start by searching

• Let’s start with grep, the most
likely tool for extracting the
desired source model

• The most obvious thing to do is to
search for the old identifier in all
of the system’s files
– grep angle *

What files to search?

• It’s hard to determine which files to
search
– Multiple and recursive directory structures
– Many types of files

• Object code? Documentation? (ASCII vs. non-
ASCII?) Files generated by other programs
(such as yacc)? Makefiles?

– Conditional compilation? Other
problems?

• Care must be taken to avoid false
negatives arising from files that are
missing

False positives

• grep angle [system’s files]

• There are likely to be a number of
spurious matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers
 presented by Angle & Brooks (IROS ‘90) */

– printf(“Now play the Star Spangled Banner”);

• Be careful about using agrep!

More false negatives

• Some languages allow identifiers to be
split across line boundaries
– Cobol, Fortran, PL/I, etc.
– This leads to potential false negatives

• Preprocessing can hurt, too
– #define deflection angle
...
deflection = sin(theta);

It’s not just syntax

• It is also important to check, before
applying the change, that the new
variable name (degree) is not in
conflict anywhere in the program
– The problems in searching apply here, too
– Nested scopes introduce additional

complications

J-9

Tools vs. task

• In this case, grep is a lexical tool but
the renaming task is a semantic one
– Mismatch with syntactic tools, too

• Mismatches are common and not at all
unreasonable
– But it does introduce added obligations on

the maintenance engineer
– Must be especially careful in extracting

and then using the approximate source
model

Finding vs. updating

• Even after you have extracted a source
model that identifies all of (or most of)
the lines that need to be changed, you
have to change them

• Global replacement of strings is at
best dangerous

• Manually walking through each site is
time-consuming, tedious, and error-
prone

Downstream consequences

• After extracting a good source model
by iterating, the engineer can apply the
renaming to the identified lines of code

• However, since the source model is
approximate, regression testing
(and/or other testing regimens) should
be applied

An alternative approach

• Griswold developed a meaning-
preserving program restructuring tool
that can help

• For a limited set of transformations,
the engineer applies a local change
and the tool applies global
compensating changes that maintain
the program’s meaning
– Or else the change is not applied
– Reduces errors and tedium when

successful

But

• The tool requires significant
infrastructure
– Abstract syntax trees, control flow graphs,

program dependence graphs, etc.

• The technology OK for small programs
– Downstream testing isn’t needed
– No searching is needed

• But it does not scale directly in terms
of either computation size or space

Recap

• “There is more than one
way to skin a cat”
– Even when it’s a tiger

• The engineer must decide on a source model
needed to support a selected approach

• The engineer must be aware of the kind of
source model extracted by the tools at hand

• The engineer must iterate the source model
as needed for the given task

• Even if this is not conscious nor explicit

J-10

Build up idioms

• Handling each task independently is
hard

• You can build up some more common
idiomatic approaches
– Some tasks, perhaps renaming, are often

part of larger tasks and may apply
frequently

– Also internalize source models, tools, etc.
and what they are (and are not) good at

• But don’t constrain yourself to only
what your usual tools are good for

Source model accuracy

• This is important for
programmers to understand

• Little focus is given to the issue

Call graph extraction tools (C)

• Two basic categories: lexical or
syntactic
– lexical

• e.g., awk, mkfunctmap, lexical source model
extraction (LSME)

- likely produce an approximate source model
+ extract calls across configurations
+ can extract even if we can’t compile
+ typically fast

... tools (C)

• Two basic categories: lexical or
syntactic...
– syntactic

• e.g., CIA, Field, cflow, rigiparse, etc.
+ more likely to produce conservative information

than a lexically-based tool
- have to pick a configuration
- need to get the source to a parseable state

Apply a syntactic CGE tool

• C Information Abstractor (CIA)
– extracts references between functions

• Constraints:
– specific configuration, libraries, etc.

• Queries:
– cref func - func socket

HTFTP.c get_listen_socket -> <libc.a> socket
HTTCP.c HTDoConnect -> <libc.a> socket
accept.c NetServerInit -> <libc.a> socket

• Can dump the entire source model

How precise?

• Are the source models extracted by
CIA conservative?

• It is typically difficult to determine the
answer to this kind of question

• But, to perform a task confidently, you
need to get a handle on the precision
– maybe by reading the tool’s

documentation
– maybe by comparison to other tools
– maybe by...?

J-11

A CGE experiment

• To investigate several call graph
extractors for C, we ran a simple
experiment
– For several applications, extract call

graphs using several extractors
– Applications: mapmaker, mosaic, gcc
– Extractors: CIA, rigiparse, Field, cflow,

mkfunctmap

Experimental results

• Quantitative
– pairwise comparisons between the

extracted call graphs

• Qualitative
– sampling of discrepancies

• Analysis
– what can we learn about call graph

extractors (especially, the design space)?

Pairwise comparison (example)

• CIA vs. Field for Mosaic (4258 calls
reported)
– CIA found about 89% of the calls that Field

found
– Field did not find about 5% of the

references CIA found
– CIA did not find about 12% of the calls

Field found

Quantitative Results

• No two tools extracted the same calls
for any of the three programs

• In several cases, tools extracted large
sets of non-overlapping calls

• For each program, the extractor that
found the most calls varied (but
remember, more isn’t necessarily
better)

• Can’t determine the relationship to the
ideal

Qualitative results

• Sampled elements to identify false
positives and false negatives

• Mapped the tuples back to the source
code and performed manual analysis
by inspection

• Every extractor produced some false
positives and some false negatives

Call graph characterization

ideal
none

conservative
compilers

optimistic
profilers

approximate
software

engineering tools

no false positives false positives

n
o

 f
a

ls
e

n
e

g
a

tiv
e

s
fa

ls
e

n
e

g
a

tiv
e

s

J-12

Next week

• Software reflexion models
– Software summarization, task-based

approach

• Rigi (and perhaps some other
clustering approaches)

• Miscellaneous

