
J-1

CSE584: Software Engineering
Lecture 7: Evolution (B)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

Outline

• Reverse engineering
• Visualization
• Software summarization

Miscellaneous visualization, etc.

Chikofsky & Cross taxonomy

Requirements
(constraints,
objectives,

business rules)

Design Implementation

Restructuring Forward Engineering Reverse Engineering

Design Recovery Reengineering

Taxonomy

• Design recovery is a subset of reverse
engineering

• The objective of design recovery is to
discover designs latent in the software
– These may not be the original designs,

even if there were any explicit ones
– They are generally recovered independent

of the task faced by the developer

• It’s a way harder problem than design
itself

Restructuring

• One taxonomy activity is restructuring
• Last week we noted lots of reasons

why people don’t restructure in
practice
– Doesn’t make money now
– Introduces new bugs
– Decreases understanding
– Political pressures
– Who wants to do it?
– Hard to predict lifetime costs & benefits

Griswold’s 1st approach

• Griswold developed an approach to
meaning-preserving restructuring (as I
said last week)

• Make a local change
– The tool finds global, compensating

changes that ensure that the meaning of
the program is preserved

• What does it mean for two programs to have the
same meaning?

– If it cannot find these, it aborts the local
change

J-2

Simple example

•Swap order of
formal parameters

• It’s not a local change nor
a syntactic change

• It requires semantic
knowledge about the
programming language

• Griswold uses a variant of
the sequence-congruence
theorem [Yang] for
equivalence

– Based on PDGs
(program dependence
graphs)

• It’s an O(1) tool

Limited power

• The actual tool and approach has limited power
• Can help translate one of Parnas’ KWIC

decompositions to the other
• Too limited to be useful in practice

– PDGs are limiting
• Big and expensive to manipulate
• Difficult to handle in the face of multiple files, etc.

• May encourage systematic restructuring in some
cases

• Some related work specifically in OO by Opdyke and
Johnson
– We’re looking at a support tool now to identify candidate

refactorings

Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t
going to work on a large scale

• But sometimes significant
restructuring is still desirable

• Instead provide a tool (star diagrams)
to
– record restructuring plans
– hide unnecessary details

• Some modest studies on programs of
20-70KLOC

A star diagram

Interpreting a star diagram

• The root (far left) represents all the instances
of the variable to be encapsulated

• The children of a node represent the
operations and declarations directly
referencing that variable

• Stacked nodes indicate that two or more
pieces of code correspond to (perhaps) the
same computation

• The children in the last level (parallelograms)
represent the functions that contain these
computations

After some changes

J-3

Evaluation

• Compared small teams of
programmers on small programs
– Used a variety of techniques, including

videotape
– Compared to vi/grep/etc.

• Nothing conclusive, but some
interesting observations including
– The teams with standard tools adopted

more complicated strategies for handling
completeness and consistency

My view

• Star diagrams may not be “the”
answer

• But I like the idea that they encourage
people
– To think clearly about a maintenance task,

reducing the chances of an ad hoc
approach

– They help track mundane aspects of the
task, freeing the programmer to work on
more complex issues

– To focus on the source code

When assigned a task to modify
an existing software system,
how does a software engineer
choose to proceed?

A view of maintenance

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned
Task

? ? ? ? ?

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

A task: isolating a subsystem

• Many maintenance tasks require identifying
and isolating functionality within the source

–sometimes to extract the subsystem
–sometimes to replace the subsystem

Mosaic
• The task is to isolate and
replace the TCP/IP
subsystem that interacts
with the network with a
new corporate standard
interface

• First step in task is to
estimate the cost
(difficulty)

Mosaic source code

• After some configuration and perusal, determine
the source of interest is divided among 4
directories with 157 C header and source files

• Over 33,000 lines of non-commented, non-blank
source lines

J-4

Some initial analysis

• The names of the directories suggest
the software is broken into:
– code to interface with the X window

system
– code to interpret HTML
– two other subsystems to deal with the

world-wide-web and the application
(although the meanings of these is not
clear)

How to proceed?

• What source model would be useful?
– calls between functions (particularly calls

to Unix TCP/IP library)

• How do we get this source model?
– statically with a tool that analyzes the

source or dynamically using a profiling
tool

– these differ in information characterization
produced (last week’s lecture)

• False positives, false negatives, etc.

More...

• What we have
– approximate call and global variable

reference information

• What we want
– increase confidence in source model

• Action:
– collect dynamic call information to

augment source model

Augment with dynamic calls

• Compile Mosaic with profiling support
• Run with a variety of test paths and

collect profile information
• Extract call graph source model from

profiler output
– 1872 calls
– 25% overlap with CIA
– 49% of calls reported by gprof not reported by CIA

Alternative action

• Alternatively, we may have wanted to
augment with calls information
extracted using a lexical technique

• For example, lexical source model
extraction tool (LSME Murphy/Notkin):

[<type>] <fn> \([{ <arg> }+] \)
 [{ { <ty> }+ ; }+] \{

 <cf> \([{ <arg> [,] }+] \)

Are we done?

• We are still left with a fundamental
problem: how to deal with one or more
large source models?
– Mosaic source model:

static function references (CIA) 3966
static function-global var refs (CIA) 541
dynamic function calls (gprof) 1872

Total 6379

J-5

One approach

Assigned
Task

Source
ModelSource

Model
Source
Model

• Use a query tool
against the source
model(s)

–maybe grep?
–maybe source model

specific tool?

• As necessary,
consult source code

– “It’s the source, Luke.”
– Mark Weiser. Source

Code. IEEE Computer
20,11 (November 1987)

Other approaches

•Visualization
•Reverse
engineering

•Summarization

Assigned
Task

Source
Model
Source
Model

Source
Model

Visualization
• e.g., Field, Plum,

Imagix 4D, McCabe,
etc.
(Field’s flowview is
used above and on
the
next few slides...)

• Note: several of
these are
commercial
products

Visualization...

Visualization... Visualization...

• Provides a “direct” view of the source
model

• View often contains too much
information
– Use elision (…)
– With elision you describe what you are not

interested in, as opposed to what you are
interested in

J-6

Reverse engineering

• e.g., Rigi, various clustering algorithms
(Rigi is used above)

Reverse engineering...

Clustering

• The basic idea is to take one or more
source models of the code and find
appropriate clusters that might
indicate “good” modules

• Coupling and cohesion, of various
definitions, are at the heart of most
clustering approaches

• Many different algorithms

Rigi’s approach

• Extract source models (they call them
resource relations)

• Build edge-weighted resource flow graphs
– Discrete sets on the edges, representing the

resources that flow from source to sink

• Compose these to represent subsystems
– Looking for strong cohesion, weak coupling

• The papers define interconnection strength
and similarity measures (with tunable
thresholds)

Math. concept analysis
• Define relationships between (for

instance) functions and global variables
[Snelting et al.]

• Compute a concept lattice capturing the
structure
– “Clean” lattices = nice structure
– “ugly” ones = bad structure

An aerodynamics program

• 106KLOC
Fortran

• 20 years old
• 317

subroutines
• 492 global

variables
• 46 COMMON

blocks

J-7

Other concept lattice uses

• File and version dependences
across C programs (using the
preprocessor)

• Reorganizing class libraries

• Not yet clear how well these work
in practice on large systems

Dominator clustering

• Girard & Koschke
• Based on call

graphs
• Collapses using a

domination
relationship

• Heuristics for
putting variables
into clusters

Aero program
• Rigid body simulation; 31KLOC of C code; 36

files; 57 user-defined types; 480 global
variables; 488 user-defined routines

Other clustering

• Schwanke
– Clustering with automatic tuning of

thresholds
– Data and/or control oriented
– Evaluated on reasonable sized programs

• Basili and Hutchens
– Data oriented
– Evaluated on smallish programs

Reverse engineering recap

• Generally produces a higher-level view
that is consistent with source
– Like visualization, can produce a “precise”

view
– Although this might be a precise view of

an approximate source model

• Sometimes view still contains too
much information leading again to the
use of techniques like elision
– May end up with “optimistic” view

More recap

• Automatic clustering approaches must
try to produce “the” design
– One design fits all

• User-driven clustering may get a good
result
– May take significant work (which may be

unavoidable)
– Replaying this effort may be hard

• Tunable clustering approaches may be
hard to tune; unclear how well
automatic tuning works

J-8

Summarization

e.g., software reflexion models

Summarization...

• A map file specifies the
correspondence between parts of
the source model and parts of the
high-level model
[file=HTTCP mapTo=TCPIP]
[file=^SGML mapTo=HTML]
[function=socket mapTo=TCPIP]
[file=accept mapTo=TCPIP]
[file=cci mapTo=TCPIP]
[function=connect mapTo=TCPIP]
[file=Xm mapTo=Window]
[file=^HT mapTo=HTML]
[function=.* mapTo=GUI]

Summarization... Summarization...

• Condense (some or all) information in
terms of a high-level view quickly
– In contrast to visualization and reverse

engineering, produce an “approximate”
view

– Iteration can be used to move towards a
“precise” view

• Some evidence that it scales
effectively

• May be difficult to assess the degree
of approximation

Case study: A task on Excel

• A series of approximate tools were
used by a Microsoft engineer to
perform an experimental reengineering
task on Excel

• The task involved the identification
and extraction of components from
Excel

• Excel (then) comprised about 1.2
million lines of C source
– About 15,000 functions spread over ~400

files

The process used

Model
Mapping

Extraction
Tool

1

2

3

4

RM
Tools

Reflexion
Model

System
Artifacts

Source
Model

77,746
calls

170 entries

13 nodes
~19 arcs

J-9

An initial Reflexion Model

• The initial Reflexion
Model computed had
15 convergences, 83,
divergences, and 4
absences

• It summarized 61% of
calls in source model

Graph

Sheet

File

0

36734

912

1210

...

...

An iterative process

• Over a 4+ week
period

• Investigate an arc
• Refine the map

–Eventually over 1000
entries

• Document
exceptions

• Augment the source
model

–Eventually, 119,637
interactions

Model
Mapping

Extraction
Tool

1

2

3

4

RM
Tools

Reflexion
Model

System
Artifacts

Source
Model

A refined Reflexion Model

Sheet

File

Wks_File

4975

1242

2207

88

69

1160

87

713

...

...

... • A later Reflexion Model
summarized 99% of
131,042 call and data
interactions

• This approximate view
of approximate
information was used
to reason about, plan
and automate portions
of the task

Graph

Sheet

File

0

36734

912

1210

...

...

Results

• Microsoft engineer judged the use of the
Reflexion Model technique successful in helping
to understand the system structure and source
code

“Definitely confirmed suspicions about the
structure of Excel. Further, it allowed me to
pinpoint the deviations. It is very easy to ignore
stuff that is not interesting and thereby focus on
the part of Excel that I want to know more about.”
— Microsoft A.B.C. (anonymous by choice)
engineer

Open questions

• How stable is the mapping as the
source code changes?

• Should reflexion models allow
comparisons separated by the
type of the source model entries?

• ...

Which ideas are important?

• Source code, source code, source code
• Task, task, task

– The programmer decides where to increase the focus,
not the tool

• Iterative, pretty fast
• Doesn’t require changing other tools nor standard

process being used
• Text representation of intermediate files
• A computation that the programmer fundamentally

understands
– Indeed, could do manually, if there was only enough time

• Graphical may be important, but also may be overrated
in some situations

J-10

Miscellaneous

• SeeSoft
• Automatic module clustering

(Mancoridis et al.)

SeeSoft: Eick et al.

• Visualize text files by
– mapping each line into a thin row
– colored according to a statistic of interest

• Focus on source code, with sample statistics
including
– age, programmer, or functionality of each line
– Data extracted from version control systems, static

analysis and profiling

• User can manipulate this representation to
find interesting patterns in software

• Applications include data discovery, project
management, code tuning and analysis of
development methodologies

Code age:
newest code in red, oldest in blue

Execution profile:
red shows hot spots, non-executed lines are

gray/black

SeeSoft

• SeeSoft seems excellent for building
important, qualitative understanding of
some aspects of source code

• It also links in effectively with the
underlying source code

• It is flexible in terms of what statistics
are viewed
– It’s not entirely clear how much work is

needed to add a new statistic

Clustering for Automatic High-
Level Design Extractino

• Recover high-level structure
• Roughly, a more automated

approach to do some Rigi
activities

• Treat clustering as an
optimization problem

J-11

Module Dependence Graph of a
graphical editor

Automatically clustered module
dependence graph

Omnipresent Modules

• They can account for omnipresent
modules
– Those used very broadly or those

that use many other modules
– These tend to reduce the quality of

the standard clustering approaches

Module diagram for dot

Automatic clustering for dot With omnipresent module
support

J-12

All allows user-defined
modules

Algorithm Animation:
heapsort from Compaq SRC

(Brown and Najork)

• Tons of work
• Mostly for educational

environments
• Have aided in some research

results
• Definitely algorithm oriented

• Not at the system level

Many domain specific
animations:

http://www.crs4.it/Animate/
Summary

• [Back to evolution]
• Evolution is done in a relatively ad hoc

way
– Much more ad hoc than design, I think

• Putting some intellectual structure on
the problem might help
– Sometimes tools can help with this

structure, but it is often the intellectual
structure that is more critical

Why is there a lack of tools to
support evolution?

• Intellectual tools
• Actual tools

• Opportunities?

