
J-1

CSE584: Software Engineering
Lecture 8: Tools & Analysis (A)

David Notkin
Computer Science & Engineering

University of Washington
http://www.cs.washington.edu/education/courses/584/

This week and next

• Tools and analysis
– Some discussion of integrated

environments (IDEs, CASE), too

• In some ways, the analysis part might
be close to the specification topics
covered earlier in the quarter

• But the focus will be much, much
closer to the source code

Structure

• Some overview on tools
• Some discussion on integrated

environments
• Static vs. dynamic tools
• Underlying representations

– Slicing will be the example tool

• Example tools

What’s a tool?

• Merriam-Webster
– a handheld device that aids in

accomplishing a task; the cutting or
shaping part in a machine or machine tool;
a machine for shaping metal

• From Jargon File (4.0.0/24 July 1996)
– A program used primarily to create,

manipulate, modify, or analyze other
programs, such as a compiler or an editor
of a cross-referencing program

• For these lectures, I will omit “intellectual”
tools, focusing instead on this kind of tool

What’s analysis?

• Merriam-Webster
–an examination of a

complex, its elements,
and their relations

• What do I mean (for
these lectures)?

–Computer-supported
“reasoning” that is
intended to aid a
programmer in
understanding and
improving a software
system

One thing I learned is
that psychoanalysts
don’t have much of a
sense of humor

You try to find a
picture of a person
laying on a couch
talking to a
psychoanalyst
somewhere on the
web!

Tools you probably use

• Compilers
• Editors
• Debuggers

– How often?

• Profilers
– How often?

• Configuration management and
version control tools

J-2

What other tools do you use?

• GUI builders?
– What kinds, how frequently?

• Testing tools?
– What kinds, how frequently?

• What else?

Some historical context

• Environments and CASE

CASE

• Computer
Aided
Software
Engineering

• Using
computers
to help
people
engineer
software

Design

Manufacturing

Engineering

Education

Control Sys.
Design

Sculpting

TolerancingTelephony

Computer Aided

Process
Planning

Lifecycle
Engineering

Drafting

Business
Solutions

Environments vs. tools
(very roughly)

• Integrated
–User interacts with a

single environment
–Environment is

responsible for
managing
consistency

• Sharing of
representation

• Standalone
–User interacts with

each tool separately
–User must apply tools

appropriate to ensure
consistency

• Independent
representations

Why environments?

• “During the past decade there has
been a growing realization [that
software tools] have by and large
failed to reduce cost and improve
quality. … [T]he essence of an
environment is that it attempts to
redress the failures of individual
software tools through synergistic
integration.”
– Osterweil, 1981

Why environments?

• “Current software development
environments often help programmers
solve their programming problems by
supplying tools such as editors,
compilers, and linkers, but rarely do
these environments help projects
solve their system composition or
management problems.”
– Notkin & Habermann, 1979

J-3

What are environments?

• “A software development environment
consists of a set of techniques to
assist the developers of software
systems, supported by some (possibly
automated) tools, along with an
organizational structure to manage the
process of software development.
Historically, these facilities have been
poorly integrated.”
– Wasserman, 1981

Computer help?

• Interaction and rich user interfaces
• Translation of high-level descriptions
• Maintaining consistency among large

and complex representations
• Encoding knowledge about an activity,

organization or process
• Broader availability of pertinent

information
• Communication medium

The “promise” of CASE

• Aside
– Parnas’s view of artificial

intelligence as a “promising”
technology

CASE is ...

• “The CASE technology is a
combination of software tools and
methodologies. … Spanning all phases
of the software lifecycle, not just on
implementation, CASE is the most
complete software technology yet.”
– McClure, 1989

CASE is ...

• “To be truly successful, a CASE
product must literally support
application development from womb to
tomb, from the initial conception of an
application through its long-term
maintenance.”
– Towner, 1989

CASE is

• “CASE provides the rigorous
automated support required to
build flexible, high-quality
information systems quickly.”
– Mylls, 1994

J-4

CASE confusion

• Environments in academia, CASE in
industry

• CASE in information systems &
information technology
– The MIS world of CIOs
– Application Development (AD)
– Information Engineering (IE)
– Methodology plays a key role

• “Upper” CASE vs. “lower” CASE

Appearances in INSPEC

• Programming environment, program development environment,
software development environment, software engineering
environment, integrated program support environment, integrated
development environment

• 2000 update: environments, 427; CASE, 200; software tools, 465

0
50

100
150
200
250
300
350
400
450
500

19
96

19
94

19
92

19
90

19
88

19
86

19
84

19
82

19
80

Software Tool

CASE

Environment

(A few) classic environments

• Interlisp
• Smalltalk-80
• Unix
• Cedar

Interlisp (Xerox PARC)

• Teitelman & Masinter, 1981
• Language-centered environment
• Very fast turnaround for code changes
• Monolithic address space

– Environment, tools, application code
commingled

• Code and data share common
representation

Smalltalk-80 (Xerox PARC)

• Goldberg, 1984
• Language-centered environment (OO)

– Classes as first-class objects, inheritance,
etc.

• Environment structured around
language features (class browsers,
protocols, etc.)

• Rich libraries (data structures, UI, etc.)

Unix (Bell Labs)

• Toolkit-based environment
• Simple integration mechanism

– Convenient user-level syntax for
composition

• Standard shared representation
• Language-independent (although

biased)
• Efficient for systems’ programming

J-5

Cedar (Xerox PARC)

• Teitelman, 1984
• Intended to mix best features of

Interlisp, Smalltalk-80, and Mesa
• Primarily was an improvement on

Mesa
– Language-centered environment
– Abstract data type language

• Strong language and environment support for
interfaces

– Key addition: garbage collection

Commercialization

• 22 companies matched “CASE” in
Company Profiles database [Spring 1997]

– About 10,000 matched “software”
– 23 matched “application development”

• 3 Yahoo CASE categories [Spring 1997]

– 55-60 registered CASE pages in Yahoo
– (35 Java categories, thousands of pages)

The business of CASE

• IDE (Software through Pictures)
– Founded 1983
– Acquired by Thomson-CSF 1996

• ~$10M annual sales

• Rational
– Founded 1982
– $572M sales in 2000

The business of CASE

• Popkin
– Founded 1986

• ~$15M annual sales

• Cayenne Software, Inc. (1996)
– Merger of Bachman (1983) and CADRE

(1982)
• ~$14M annual sales
• Now out of business

• StructSoft (TurboCASE/Sys)
– Formed 1984

• ~$6M annual sales

The business of CASE

• I-Logix
– Founded 1987

• ~$10M annual sales

• Reasoning Systems
– Founded 1984

• ~$20M annual sales

Some context

• SAP AG
– R/3 Business Process (Re)Engineering
– Founded 1972

• >$2B annual revenue

• Largest “application development”
company in Company Profiles
– Progress Software, 1981
– ~$180M annual revenue

J-6

CASE quotation I

• “Despite the many grand predictions
of the trade press over the past
decade, computer-assisted software
engineering (CASE) tools failed to
emerge as the promised `silver
bullet.’”
– Guinan, Cooprider, Sawyer; IBM Systems

Journal, 1997

CASE quotation II

• “CASE tools are sometimes
excessively rigid in forcing the user to
input too much information before
giving usable results back. CASE tools
also typically don't adapt to multiple or
in-house methodologies…”
– www.confluent.com; 1997

Myth #1 of CASE

• Integration is job #1

• Integrating tools helps, but only if
the tools are the “right” tools

• That is, integration is a second
order effect, not a first order
effect

Myth #2 of CASE

• Graphics inherently dominate text
– “A picture is worth a thousand words”

• This is a complicated issue
– Screen real estate
– Sharing with other tools
– Sharing with other people

Myth #3 of CASE

• Software tools are more important
than intellectual tools

• False
– Software tools are important but are

generally a second order effect
– Sometimes software tools can qualitatively

change the world, although usually
indirectly

Myth #4 of CASE

• Tool adoption is a consumer
problem not a producer problem

• False

J-7

Organizational issues
(Orlikowski)

• “CASE Tools as Organizational Change:
Investigating Incremental and Radical
Changes in Systems Development”
– MIS Quarterly Best Paper, 1993

• “[To] account for the experiences and
outcomes associated with CASE tools,
researchers should consider the social
context of systems development, the
intentions and actions of key players, and the
implementation process following by the
organization.”

Myth #5 of CASE

• Goal should be to change how
software engineering is done

• No, it should be to enhance how
people are doing software
engineering

Myth #6 of CASE

• The tools can handle creative aspects
of software engineering

• Tools frequently fail to be useful
because they make poor judgments
about what the human does well and
what the computer does well

Tools

• For at least a while, the pendulum
seems to have moved back towards
tools rather than environments/CASE
– This isn’t uniformly true, but I think it is

true on the whole

• Undoubtedly, at some point the
pendulum will swing back again

News Flash! Notkin’s wrong!

• From the Miller Freeman, Inc.
newswire from November 23, 1998

• ‘Better, faster, cheaper,' the mantra of technology
vendors still drives product development and
marketing. But now a new word must be added:
integrated. This year's Intelligent Enterprise Dozen
offers testament to the importance of application
integration. Today, vendors find that customers have
the parts; now they want the whole. Best-of-breed
products must adhere to industry standards;
packages must work together; and productivity tools,
such as decision support, must become closed-loop
solutions.

Programming languages

• Many (researchers, especially) claim that with
better programming languages, we’d have no
need (or significantly reduced need) for
software tools

• How many of you took CSE583?
– Scheme, ML, Haskell, etc.

• Assuming you could/would build most
commercial products with such languages,
which tools would you give up?
– Probably none

J-8

However

• The underlying premises and implementation
structures for many tools and language
implementations are closely related

• Examples include:
– The program dependence graph representation is

heavily used in program optimization and
parallelization, as well as in software engineering
tools

– Type inference is being used increasingly broadly
as the basis for some software engineering tools

• We’ll see one concrete example, Lackwit

Types

• Type systems fit into the definition of
analysis we’re using

• These systems are intended to
eliminate some classes of errors in
programs
– Programs in a language are analyzed and

ones that don’t pass type checking are
considered illegal programs (static typing)

– During execution checks are made to
ensure that bit representations are never
misinterpreted (dynamic typing)

Type inferencing

• A downside of type systems is that the
programmer has to write more “stuff”

• Type inferencing has the compiler
compute what the types of the
expressions should be
– The programmer writes less down
– The programmer has less to change when

the program is modified
– The programmer gets almost all the

benefits of static typing

Static vs. dynamic tools

• Static tools
– Analyze the source per se
– Analysis applies to all possible executions

• Dynamic tools
– Analyze executions of the program and the

source together
– Analysis only applies to those executions

Static tools

• [Remember the information issues in
source model extraction]

• Generally return source models with
no false negatives (conservative)

• Because of the underlying
undecidability of most interesting
analyses generally returns imprecise
models (includes many false positives)

Dynamic tools

• Generally return source models
with no false positives

• May omit many true positives

J-9

A classic static tool: slicing

• Of interest by itself
• And for the underlying

representations
– Originally, data flow
– Later, program dependence graphs

Slicing, dicing, chopping

• Program slicing is an approach to
selecting semantically related
statements from a program [Weiser]

• In particular, a slice of a program with
respect to a program point is a
projection of the program that includes
only the parts of the program that
might affect the values of the variables
used at that point
– The slice consists of a set of statements

that are usually not contiguous

Basic ideas

• If you need to perform a software engineering
task, selecting a slice will reduce the size of
the code base that you need to consider

• Debugging was the first task considered
– Weiser even performed some basic user studies

• Claims have been made about how slicing
might aid program understanding,
maintenance, testing, differencing,
specialization, reuse and merging

Example
read(n)
i := 1;
sum := 0;
product := 1;
while i <= n do begin
 sum := sum + i;
 product :=
 product * i;
 i := i + 1;
end;
write(sum);
write(product);

7KLV�H[DPSOH��DQG�RWKHU�PDWHULDO��GXH�LQ�SDUW�WR�)UDQN�7LS

read(n)
i := 1;
sum := 0;
product := 1;
while i <= n do begin
 sum := sum + i;
 product :=
 product * i;
 i := i + 1;
end;
write(sum);
write(product);

Weiser’s approach

• For Weiser, a slice was a reduced,
executable program obtained by
removing statements from a program
– The new program had to share parts of the

behavior of the original

• Weiser computed slices using a
dataflow algorithm, given a program
point (criterion)
– Using data flow and control dependences,

iteratively add sets of relevant statements
until a fixpoint is reached

Ottenstein & Ottenstein

• Build a program dependence
graph (PDG) representing a
program

• Select node(s) that identify the
slicing criterion

• The slice for that criterion is the
reachable nodes in the PDG

J-10

PDG for the exampleEntry

read(n) i:=1 sum:=0 prod:=1
write
(sum)

write
(prod)

sum :=
sum + i

prod :=
prod * i

i := i + 1

while
i <=n

•Thick lines are control dependences
•Thin lines are (data) flow dependences

Procedures

• What happens when you have
procedures and still want to slice?

• Weiser extended his dataflow
algorithm to interprocedural slicing

• The PDG approach also extends to
procedures
– But interprocedural PDGs are a bit hairy

(Horwitz, Reps, Binkley used SDGs)
– Representing conventional parameter

passing is not straightforward

The next slide...

• ..shows a fuzzy version of the
SDG for a version of the
product/sum program
– Procedures Add and Multiply are

defined
– They are invoked to compute the
sum, the product and to increment i
in the loop

Context

• A big issue in interprocedural slicing
is whether context is considered

• In Weiser’s algorithm, every call to a
procedure could be considered as
returning to any call site
– This may significantly increase the size of

a slice

Reps et al.

• Reps and colleagues have a number of
results for handling contextual
information for slices

• These algorithms generally work to
respect the call-return structure of the
original program
– This information is usually captured as

summary edges for call nodes

J-11

Technical issues

• How to slice in the face of
unstructured control flow?

• Must slices be executable?
• What about slicing in the face of

pointers?
• What about those pesky

preprocessor statements?

LCLint next

• Probably shifted until next week,
depending on the time

LCLint [Evans et al.]

• [Material taken in part from a talk by S.
Garland]

• Add some partial specification
information to C code to
– Detect potential bugs
– Enforce coding style

• Versatile and lightweight
– Incremental gain for incremental effort
– Fits in with other tools

Detects potential bugs

• Specifications enable more
accurate checks, messages

• Memory management a particular
problem in the C language

Enforces coding style

• Abstraction boundaries
• Use of mutable and immutable

types

LCLint Does Not

• Encourage programmer to write
– Contorted code
– Inefficient code

• Report only actual errors
• Report all errors
• Insist on reporting a fixed set of

potential errors
– Many options and control flags

J-12

Ex: Definition before Use

• Sample code…can annotate in several ways
– if (setVal(n, &buffer)) ...

• Must buffer be defined before calling setVal?
– Yes: bool setVal(int d, char *val);

– No: bool setVal(int d, out char *val);

• Is buffer defined afterwards?
– Yes: bool setVal(...); {modifies *val;}

– Maybe: bool setVal(...); {modifies nothing;}

– NO!: bool setVal(...); {ensures trashed(val);}

More Accurate Checks

• Conventional lint tools report
– Too many spurious errors
– Too few actual errors

• Because
– Code does not reveal the programmer’s

intent
– Fast checks require simplifying

assumptions

• Specifications give good simplifying
assumptions

Abstraction Boundaries

• Client code should rely only on
specifications

• Types can be specified as abstract
– immutable type date;

• date nextDay(date d); { }

– mutable type set;
• void merge(set s, set t); {modifies s;}

• LCLint detects
– Inappropriate access to representation

• Including use of ==
– Inappropriate choice of representation

• E.g., for meaning of = (sharing)

Checking Abstract Types

• Specification: set.lcl contains the single line
– mutable type set;

• Client code
– #include “set.h”
bool f(set s, set t) {
 if (s->size > 0) return (s == t);
 ...

• > lclint set client.c
– client.c:4,7:
 Arrow access field of abstract type
 (set): s->size

– client.c:5,13:
 Operands of == are abstract
 type (set): s == t

Checking Side Effects

• Specification:
void set_insert (set s, int e)
 { modifies s;}
void set_union(set s, set t)
 { modifies s;}

• Code (in set.c) :
void set_union (set s, set t) {
 int i;
 for (i = 0; i < s->size; i++)
 set_insert(t, s->elements[i]);
 }

• Message:
– set.c:35, 27:

 Called procedure set_insert may modify t:
 set_insert(t, s->elements[i])

Checking Use of Memory

• Specifications
– only char *gname;

. . .
void setName (temp char *pname) char *gname;

• Code
– void setName (char *pname) {
 gname = pname;
}

• LCLint error messages
– sample.c:2:3: Only storage gname not
released before assignment:
 gname = pname

– sample.c:2:3: Temp storage assigned to
only: gname = pname

J-13

If C Were Better...

• Would LCLint still help?
• Yes, because specifications

– contain information not in code
– contain information that is hard to infer

from code
– are usable with legacy code, existing

compilers
– can be written faster than languages can

be changed
– are important even with better languages

Experience with LCLint

• Reliable and efficient
– Runs at compiler speed

• Used on both new and legacy code
– 1,000-200,000 line programs
– Over 500 users have sent e-mail to MIT

• Tested with varying amounts of specification
– Lots to almost none
– LCLint approximates missing specifications

• Results encouraging

Understanding Legacy Code

• Analyzed interpreter (quake) built at DEC
SRC

• Discovered latent bugs (ordinary lint can do
this)

• Discovered programming conventions
– Documented use of built-in types (int, char, bool)
– Identified (and repaired) (nearly) abstract types

• Documented action of procedures
– Use of global information, side-effects

• Enhanced documentation a common thread
– Easier to read and write because formulaic
– More trustworthy because checked

Fundamental benefit

• Partial specifications
• Low entry cost
• You get what you pay for (or

maybe a bit more)

Purify (& Bounds-checker)

• Dynamic (commercial) tool for detecting
memory leaks and access errors
– http://www.rational.com/products/purify/

– In some sense, a dynamic analog to the memory
checking aspects of LCLint

• Trapping every memory access would be
overly expensive
– Purify inserts function calls before loads and

stores to maintain a table that holds a 2-bit state for
each byte in the heap and stack

• Requires working with malloc/free, too

Memory State Transitions

• Writing to memory
with any bytes that
are unwriteable
prints a diagnostic

• Same with reading
unreadable bytes

J-14

Other violations

• Array Bound Violations
– Allocate a “red-zone” around malloc

blocks, recording them as unwriteable and
unreadable

• Uninitialized variables
– Initialize them to allocated-but-uninitialized

state

• Accessing freed memory
– Do not reallocate memory until it has aged

• Aging can be specified by the user in terms of
number of calls to free

Overhead

• 2 bits per state; about 25%
memory overhead during
development

• Run-time no worse than 5.5 times
optimized C code (and usually no
worse than compiling with
debugging on)

Next week

• Example tools
– Type inference (Lackwit)
– Dynamic invariant detection

(Daikon)
– …

