
Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

―To my taste the main characteristic of intelligent thinking is that

one is willing and able to study in depth an aspect of one's

subject matter in isolation, for the sake of its own consistency, all

the time knowing that one is occupying oneself with only one of

the aspects. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… The other aspects have to wait their turn, because our heads

are so small that we cannot deal with them simultaneously

without getting confused. This is what I mean by ‗focussing

one's attention upon a certain aspect‘; it does not mean

completely ignoring the other ones, but temporarily forgetting

them to the extent that they are irrelevent for the current topic. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… Such separation, even if not perfectly possible, is yet the only

available technique for effective ordering of one's thoughts that I

know of. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… I usually refer to it as ‗separation of concerns‘, because one

tries to deal with the difficulties, the obligations, the desires, and

the constraints one by one. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… When this can be achieved successfully, we have more or less

partitioned the reasoning that had to be done — and this

partitioning may find its reflection in the resulting partitioning of

the program into ‗modules‘ — but I would like to point out that

this partitioning of the reasoning to be done is only the result,

and not the purpose. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… The purpose of thinking is to reduce the detailed reasoning

needed to a doable amount, and a separation of concerns is the

way we hope to achieve this reduction. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… The crucial choice is, of course, what aspects to study ‗in

isolation‘, how to disentangle the original amorphous knot of

obligations, constraints and goals into a set of ‗concerns‘ that

admit a reasonably effective separation. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… To arrive at a successful separation of concerns for a new,

difficult problem area will nearly always take a long time of hard

work; it seems unrealistic to expect otherwise. ...

Copyright 1997, 1998 Xerox Corporation

- Dijkstra, A discipline of programming, 1976

last chapter, In retrospect

… The knowledge of the goal of ‗separation of concerns‘ is a

useful one: we are at least beginning to understand what we are

aiming at.‖

Copyright 1997, 1998 Xerox Corporation

goal of this talk

slides, papers and system at www.parc.xerox.com/aop

• discuss the implementation of complex

software systems

• focusing on issues of modularity

• how existing tools help achieve it

• propose a new tool to help improve

modularity in some cases where existing

tools are inadequate

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

format of this talk

• sharing context

• a problem and an idea

• our current instantiation of the idea

• implementation

• summary and hopes

part i -- sharing context

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

sharing context

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

the engineering challenge

• extremely complex systems

• more than our mind can handle all at once

• must manage the complexity

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

problem decomposition

• break the problem into sub-problems

• address those relatively independently

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

solution construction

& composition

• construct complete systems

from the designs by

– implementing the sub-parts, and

– composing them to get the whole

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

design & implementation

• decomposition breaks big

problems into smaller ones

• composition builds big

solutions out of smaller ones

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

―clean separation of concerns‖

we want:

– natural decomposition

– concerns to be localized

– explicit handling of design decisions

– in both design and implementation

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

achieving this requires...

• synergy among

– problem structure and

– design concepts and

– language mechanisms

―natural design‖

―the program looks like the design‖

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

the ―component‖1 concept

• a modular unit of functionality

• fits many natural design concerns

• well-supported by existing programming technology

• a rich collection of

– design principles, conventions and notations

– programming mechanisms

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

object-orientation

―objects‖

– used in design and implementation

– object-oriented design

– object-oriented programming

– many tools to bridge the gap

objects

objects

Copyright 1997, 1998 Xerox Corporationpart i -- sharing context

programming languages
support implementation

and composition

design practices support
decomposition

good separation of
concerns in both design

and implementation

programming languages
support implementation

and composition of
components

decomposition into
components

summary so far

complex systems

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

a problem and an idea

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

a distributed digital library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

the component structure

• use objects

– objects are a natural fit for this system

• so…

– the design breaks down into component objects

– implement using OOP

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

the class graph

title: string

author: string

isbn: int

pdf: pdf

tiff: tiff

LibraryBook
holds* *

cooperates*

*

User

accesses

*

*

Printer
uses* *

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

public class Printer {

String status = “Idle”;

Vector jobs;

public boolean print (User u, Book b) {

PostScript ps=get_ps(b);

Job newJob = new Job (ps, u.get_name());

return queue(newJob);

}

boolean queue(Job j) {

//...

return true;

}

}

Book

Printer

User Library
class Library {

Hashtable books;

Library(){

books = new Hashtable(100);

}

public Book getBook(User u, String title) {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null) {

b.set_borrower(u);

return b;

}

}

}

return null;

}

}

class User {

private String name;

Library theLibrary;

Printer thePrinter;

public User(String n) { name = n; }

public boolean getBook (String title) {

Book aBook = theLibrary.getBook(this, title);

thePrinter.print(this,aBook);

return true;

}

}

class Book {

private String title;

private String author;

private String isbn;

private PostScript ps;

private User borrower;

public Book(String t, String a, String i, PostScript p) {

title = t;

author = a;

isbn = i;

ps = p;

}

public User get_borrower() {return borrower;}

public void set_borrower(User u) {borrower = u;}

public PostScript get_ps() { return ps; }

}

the code

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

all is well

• design is natural

• code looks like the design

• good separation of concerns

– localized in the design

– localized in the code

– handled explicitly

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

a distributed digital library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

minimizing network load

Computer A

Computer D

Computer B Computer C

dataflow patterns

printerlibrary

user

book

library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

minimizing network load

printerlibrary

user

library

title, author, isbn

printable format

controlling slot copying

method invocations

book

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

the code
Book

Printer

User Library

revised

class Book {

private BookID id;

private PostScript ps;

private UserID borrower;

public Book(String t, String a, String i, PostScript p) {

id = new BookID(t,a,i);

ps = p;

}

public UserID get_borrower() {return borrower;}

public void set_borrower(UserID u) {borrower = u;}

public PostScript get_ps() { return ps; }

public BookID get_bid() { return id; }

}

class BookID {

private String title;

private String author;

private String isbn;

public BookID(String t, String a, String i) {

title = t;

author = a;

isbn = i;

}

public String get_title() {return title;}

}

class User {

private UserID id;

Library theLibrary;

Printer thePrinter;

public User(String n) { id = new UserID(n); }

public boolean getBook (String title) {

BookID aBook=null;

try{

aBook = theLibrary.getBook(id, title);

} catch (RemoteException e) {}

try {

thePrinter.print(id, aBook);

} catch (RemoteException e) {}

return true;

}

public UserID get_uid() { return id; }

}

class UserID {

private String name;

public UserID(String n) { name = n; }

public String get_name() { return name; }

}

interface LibraryInterface extends Remote {

public BookID getBook(UserID u, String title) throws RemoteException;

public PostScript getBookPS(BookID bid) throws RemoteException;

}

class Library extends UnicastRemoteObject implements LibraryInterface {

Hashtable books;

Library() throws RemoteException {

books = new Hashtable(100);

}

public BookID getBook(UserID u, String title)

throws RemoteException {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null) {

b.set_borrower(u);

return b.get_bid();

}

}

}

return null;

}

public PostScript getBookPS(BookID bid)

throws RemoteException {

if (books.containsKey(bid.get_title())) {

Book b = (Book)books.get(bid.get_title());

if (b != null)

return b.get_ps();

}

return null;

}

}

interface PrinterInterface extends Remote {

public boolean print (UserID u, BookID b) throws RemoteException;

}

class Printer extends UnicastRemoteObject

implements PrinterInterface {

String status = “Idle”;

Vector jobs;

private Library theLibrary;

public Printer() throws RemoteException{}

public boolean print (UserID u, BookID b) throws RemoteException{

PostScript ps=null;

try{ps = theLibrary.getBookPS(b);}

catch (RemoteException e) {}

Job newJob = new Job (ps, u.get_name());

return queue(newJob);

}

boolean queue(Job j) {

//...

return true;

}

}

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

why?

• why did so much code change?

• why wasn‘t this concern well localized?

• why didn‘t this ―fit‖ the component structure?

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

because…

• we are working with ―emergent entities‖, and

• the component concept, and its associated

implementation mechanisms, fundamentally

don‘t provide adequate support for working

with emergent entities

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

emergent entities

printerlibrary

user

book

library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

emergent entities

• emerge1 during program execution

– from (possibly non-local) interactions of the components

• are not components

– do not exist explicitly in the component model or code

1 emerge: to become manifest; to rise from or as if from an enveloping
fluid; come out into view

printerlibrary

user

book

library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

emergent entities

printerlibrary

user

book

library

• emerge1 during program execution

– from (possibly non-local) interactions of the components

• are not components

– do not exist explicitly in the component model or code

1 emerge: to become manifest; to rise from or as if from an enveloping
fluid; come out into view

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

are tough to handle because...

• they are not explicit in the component model or code

• they have non-localized origins and interactions

• they cross-cut the component structure...

printerlibrary

user

book

library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

cross-cutting the components

• the sub-parts of the objects are not existing classes

• the desired dataflows are not existing message sends

title: string

author: string

isbn: int

pdf: pdf

tiff: tiff

LibraryBook
holds* *

cooperates*

*

User

accesses

*

*

Printer
uses* *

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

but, but, but... the code can be

remodularized

to ―fit‖ better...

<imagine your own alternative class diagram here>

violates separation of concerns

leads to tangled code

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

claim

• remodularizing isn‘t good enough!

– it ruins the separation of concerns

• the functionality and the network

optimization concern are fundamentally

different

• would like different ―carvings‖1 of the system

– in terms of component structure,

– and in terms of emergent entities,

• with support for the cross-cutting modularities
1 carve: to cut with care or precision, to cut into pieces or slices,

to work as a sculptor or engraver

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

just try it

dataflow Book {Library to User}

{copy: title, author, isbn};

dataflow Book {Library to Printer}

{direct: pdf, tiff};

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

what it says

dataflow Book {Library to User}

{copy: title, author, isbn};

the dataflow of books,

from library objects to

user objects, should be

implemented by copying

the title, author and isbn

slots only

library

user

library printer

book

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

how it says it

dataflow Book {Library to User}

{copy: title, author, isbn};

identifies

emergent entity

controls its

implementation

library

user

library printer

book

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

cross-cutting

dataflow Book {Library to User}

{copy: title, author, isbn};

emergent

static

Library

User

Book

title: string

author: string

isbn: int

pdf: pdf

postscript: ps

Printer

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

and...

dataflow Book {Library to Printer}

{direct: pdf, tiff};

printerlibrary

user

book

library

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

class Book {

private BookID id;

private PostScript ps;

private UserID borrower;

public Book(String t, String a,

String i, PostScript p) {

id = new BookID(t,a,i);

ps = p;

}

public UserID get_borrower() {return borrower;}

public void set_borrower(UserID u) {borrower = u;}

public PostScript get_ps() { return ps; }

public BookID get_bid() { return id; }

}

class BookID {

private String title;

private String author;

private String isbn;

public BookID(String t, String a, String i) {

title = t;

author = a;

isbn = i;

}

public String get_title() {return title;}

}

class User {

private UserID id;

Library theLibrary;

Printer thePrinter;

public User(String n) { id = new UserID(n); }

public boolean getBook (String title) {

BookID aBook=null;

try{

aBook = theLibrary.getBook(id, title);

} catch (RemoteException e) {}

try {

thePrinter.print(id, aBook);

} catch (RemoteException e) {}

return true;

}

public UserID get_uid() { return id; }

}

class UserID {

private String name;

public UserID(String n) { name = n; }

public String get_name() { return name; }

}

interface LibraryInterface extends Remote {

public BookID getBook(UserID u, String title) throws RemoteException;

public PostScript getBookPS(BookID bid) throws RemoteException;

}

class Library extends UnicastRemoteObject implements LibraryInterface {

Hashtable books;

Library() throws RemoteException {

books = new Hashtable(100);

}

public BookID getBook(UserID u, String title)

throws RemoteException {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null)

b.set_borrower(u);

return b.get_bid();

}

}

return null;

}

public PostScript getBookPS(BookID bid)

throws RemoteException {

if (books.containsKey(bid.get_title())) {

Book b = (Book)books.get(bid.get_title());

if (b != null)

return b.get_ps();

}

return null;

}

}

interface PrinterInterface extends Remote {

public boolean print (UserID u, BookID b)

throws RemoteException;

}

public class Printer extends UnicastRemoteObject

implements PrinterInterface {

private Vector jobs = new Vector(10, 10);

private Library theLibrary;

public Printer() throws RemoteException{}

public boolean print (UserID u, BookID b)

throws RemoteException{

PostScript ps=null;

try{

ps = theLibrary.getBookPS(b);

} catch (RemoteException e) {}

Job newJob = new Job (ps, u);

return queue(newJob);

}

boolean queue(Job j) {

//...

return true;

}

}

printerlibrary

user

book

library

assume a…

• a ―language processor‖ that

– accepts two kinds of code as input;

– produces ―woven‖ output code, or

– directly implements the computation

―weaver‖

public class PrinterImpl {

String status = “Idle”

Vector jobs;

public PrinterImpl() {}

pubilc get_status() { return status }

public add_job(int j) {

jobs.add(j);

}

}

class Library {

Hashtable books;

Library(){

books = new Hashtable(100);

}

public Book getBook(User u, String title) {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null)

b.set_borrower(u);

return b;

}

}

return null;

}

}

class User {

private String name;

Library theLibrary;

Printer the; Printer

public User(String n) { name = n; }

public boolean getBook (String title) {

Book aBook = theLibrary.getBook(this, title);

thePrinter.print(this,aBook);

return true;

}

}

class Book {

private String title;

private String author;

private String isbn;

private PostScript ps;

private User borrower;

public Book(String t, String a, String i, PostScript p) {

title = t;

author = a;

isbn = i;

ps = p;

}

public User get_borrower() {return borrower;}

public void set_borrower(User u) {borrower = u;}

public PostScript get_ps() { return ps; }

}

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

portal Library {

Book find (String title){

return:

Book: {copy title, author, isbn;}

}

}

4 classes

2 aspects

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

general claim

• remodularizing the component structure

is not a satisfactory way of dealing with

emergent entities

• want different carvings of the system:

– keep the clean component structure

– control emergent entities in ―natural terms‖

• in terms of the emergent entity

• with support for cross-cutting

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

emergent entities

• an entity that does not exist explicitly in

the component model or code, but rather

arises during execution

– data flows

• all the places this value goes...

– control states

• two methods running concurrently

• one method blocked on another

• all the callers of this function

• history of calls up to this point (aka the stack)...

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

the ―aspect‖ concept

• components are modular units of

functionality

• aspects are modular units of control over

emergent entities

• in the distributed digital library:

– library component

– book component

– user component

– printer component

– …

– lookup dataflow aspect

– printing dataflow aspect

– …

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

―aspect languages‖

• aspect languages

connect to a component language, and provide:

– a mechanism for referring to emergent entities

– a mechanism for exercising some control over

the implementation of the emergent entities

– support for using cross-cutting modularities

dataflow Book {Library to Printer}

{direct: pdf, tiff};

Copyright 1997, 1998 Xerox Corporationpart ii -- a problem and an idea

programming languages
support implementation

and composition

design practices support
decomposition

good separation of
concerns in both design

and implementation

programming languages
support implementation

and composition of
components

decomposition into
components

summary so far

complex systems

programming languages
support implementation

and composition of
components & aspects

decomposition into
components & aspects

improved separation of
concerns in both design

and implementation

Copyright 1997, 1998 Xerox Corporation

the AspectJ™ languages

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

AspectJ is…

• an extension to Java™

• targeted at distributed and/or concurrent

applications

• several general-purpose aspect languages

– remote data transfer aspect language

– computation migration aspect language

– coordination aspect language

• a weaver for those languages

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

a data transfer aspect language
• provides control over data transfers between

execution spaces

– transfer of arguments and/or return values

– control over sub-fields, sub-sub-fields etc.

ot.m(op)
op

execution space 1

ot

execution space 2

portal

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

referring to the emergent entity
portal Library {

Book find (String title){

return:

Book: {copy title, author, isbn;}

}

}

op

execution space 1

ot

execution space 2

ot.m(op)

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

copy transfer mode
portal Library {

Book find (String title){

return:

Book: {copy title, author, isbn;}

}

}

op

execution space 1

ot

execution space 2

ot.m(op)

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

gref transfer mode
portal Library {

Book find (String title){

return:

Book: gref;

}

}

op

execution space 1

ot

execution space 2

ot.m(op)

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

direct transfer mode
portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

}

ot

ot.m(op)
op

execution space 0

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

the aspect language cross-cuts OOP

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

}

when you send:

• this kind of object, as

• this argument of

• this method, send

• this field

• this way

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

aspect composition cross-cuts too

portal Library {

Book find (String title){

return:

Book: {copy title, author, isbn;}

}

}

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

}

printerlibrary

user

library

book

• these aspects compose along dataflows

• not along normal class/method composition

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

portal Library {

Book find(String title) {

return: {copy title, author, isbn;

Author bypass books;}

}

}

more on cross-cutting

Library

User

Book

Printer

Author

*

*

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

what this is and isn‘t

• weaver combines two kinds of code

• equivalent effect of complex tangled code

• equivalent elegance of original clean code

– component code is unchanged

– natural modularity of aspects

class Book {

private BookID id;

private PostScript ps;

private UserID borrower;

public Book(String t, String a,

String i, PostScript p) {

id = new BookID(t,a,i);

ps = p;

}

public UserID get_borrower() {return borrower;}

public void set_borrower(UserID u) {borrower = u;}

public PostScript get_ps() { return ps; }

public BookID get_bid() { return id; }

}

class BookID {

private String title;

private String author;

private String isbn;

public BookID(String t, String a, String i) {

title = t;

author = a;

isbn = i;

}

public String get_title() {return title;}

}

class User {

private UserID id;

Library theLibrary;

Printer thePrinter;

public User(String n) { id = new UserID(n); }

public boolean getBook (String title) {

BookID aBook=null;

try{

aBook = theLibrary.getBook(id, title);

} catch (RemoteException e) {}

try {

thePrinter.print(id, aBook);

} catch (RemoteException e) {}

return true;

}

public UserID get_uid() { return id; }

}

class UserID {

private String name;

public UserID(String n) { name = n; }

public String get_name() { return name; }

}

interface LibraryInterface extends Remote {

public BookID getBook(UserID u, String title) throws RemoteException;

public PostScript getBookPS(BookID bid) throws RemoteException;

}

class Library extends UnicastRemoteObject implements LibraryInterface {

Hashtable books;

Library() throws RemoteException {

books = new Hashtable(100);

}

public BookID getBook(UserID u, String title)

throws RemoteException {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null)

b.set_borrower(u);

return b.get_bid();

}

}

return null;

}

public PostScript getBookPS(BookID bid)

throws RemoteException {

if (books.containsKey(bid.get_title())) {

Book b = (Book)books.get(bid.get_title());

if (b != null)

return b.get_ps();

}

return null;

}

}

interface PrinterInterface extends Remote {

public boolean print (UserID u, BookID b)

throws RemoteException;

}

public class Printer extends UnicastRemoteObject

implements PrinterInterface {

private Vector jobs = new Vector(10, 10);

private Library theLibrary;

public Printer() throws RemoteException{}

public boolean print (UserID u, BookID b)

throws RemoteException{

PostScript ps=null;

try{

ps = theLibrary.getBookPS(b);

} catch (RemoteException e) {}

Job newJob = new Job (ps, u);

return queue(newJob);

}

boolean queue(Job j) {

//...

return true;

}

}

aspect

weaver

public class PrinterImpl {

String status = “Idle”

Vector jobs;

public PrinterImpl() {}

pubilc get_status() { return status }

public add_job(int j) {

jobs.add(j);

}

}

class Library {

Hashtable books;

Library(){

books = new Hashtable(100);

}

public Book getBook(User u, String title) {

System.out.println("REQUEST TO GET BOOK " + title);

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

System.out.println("getBook: Found it:" + b);

if (b != null) {

if (b.get_borrower() == null)

b.set_borrower(u);

return b;

}

}

return null;

}

}

class User {

private String name;

Library theLibrary;

Printer the; Printer

public User(String n) { name = n; }

public boolean getBook (String title) {

Book aBook = theLibrary.getBook(this, title);

thePrinter.print(this,aBook);

return true;

}

}

class Book {

private String title;

private String author;

private String isbn;

private PostScript ps;

private User borrower;

public Book(String t, String a, String i, PostScript p) {

title = t;

author = a;

isbn = i;

ps = p;

}

public User get_borrower() {return borrower;}

public void set_borrower(User u) {borrower = u;}

public PostScript get_ps() { return ps; }

}

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

portal Library {

Book find (String title){

return:

Book: {copy title, author, isbn;}

}

}

4 classes

2 aspects

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

a coordination aspect language

coordinator Shape {

selfex adjustLocation;

selfex adjustSize;

mutex {adjustLocation, getX};

mutex {adjustLocation, getY};

mutex {adjustSize, getWidth};

mutex {adjustSize, getHeight};

}

public class Shape {

protected int x = 0;

protected int y = 0;

protected int w = 0;

protected int h = 0;

int getX() { return x; }

int getY() { return y; }

int getWidth(){ return w; }

int getHeight(){ return h; }

void adjustLocation() {

x = longCalculation1();

y = longCalculation2();

}

void adjustSize() {

w = longCalculation3();

h = longCalculation4();

}

}

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

coordinator Shape {

selfex adjustLocation,

adjustSize;

mutex {adjustLocation, x};

mutex {adjustLocation, y};

mutex {adjustSize, width};

mutex {adjustSize, height};

}

shape

• per-objectstatic coordinator Shape {

selfex adjustLocation,

adjustSize;

mutex {adjustLocation, getX};

mutex {adjustLocation, getY};

mutex {adjustSize, width};

mutex {adjustSize, height};

}

shape

• per-object

• per-class

fits object-oriented modularity

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

cross-cuts object-oriented modularity

• per-object

• per-class

• multi-class

static coordinator Shape, Screen {

selfex adjustLocation,

adjustSize;

mutex {adjustLocation, getX};

mutex {adjustLocation, getY};

mutex {adjustSize, width};

mutex {adjustSize, height};

}

shape screen

• per-object

• per-class

• multi-class

• any methods

Copyright 1997, 1998 Xerox Corporationpart iii -- the AspectJ languages

status of AspectJ

• some preliminary user studies complete

– results promising, not yet conclusive

• first public release to go on web-site shortly

– free use (including in products)

– weaver, documentation, example programs

– coordination aspect language only

• next release early June

– remote data transfer aspect language

• later releases

– other aspect languages, operate directly on class files…

Copyright 1997, 1998 Xerox Corporation

implementing aspect weavers

jump to conclusion

Copyright 1997, 1998 Xerox Corporationpart iv -- implementing aspect weavers

what aspect weavers do

• implement one or more aspect languages

• allow us to program in alternate modularity

– in the modularity of the emergent entity

– help with cross-cutting

• aspect weaver must ―gather up the roots and

contact points of emergent entities‖

– places spread around the OO program

– this can appear difficult...

Copyright 1997, 1998 Xerox Corporationpart iv -- implementing aspect weavers

―frob every method call‖
class Library {

Hashtable books = new Hashtable(100);

}

public Book find(User u, String title) {

frob();

if(books.containsKey(title)) {

frob();

Book b = (Book)books.get(title);

if (b != null) {

frob();

if (b.getBorrower() == null)

{frob();

b.setBorrower(u);}

return b;

}

}

return null;

}

}

Copyright 1997, 1998 Xerox Corporationpart iv -- implementing aspect weavers

domain transforms

v

t

v

f

• what is diffuse in one domain is local in another

• the Fourier transform moves between the two

– it localizes what was non-local and vice-versa

time domain frequency domain

Copyright 1997, 1998 Xerox Corporationpart iv -- implementing aspect weavers

reflection links two domains

class Library {

Hashtable books;

Library() {

books = new Hashtable(100);

}

public Book find(User u, String title) {

if(books.containsKey(title)) {

Book b = (Book)books.get(title);

if (b != null) {

if (b.get_borrower() == null)

b.set_borrower(u);

return b;

}

}

return null;

}

}

• the object domain: localizes books and their functionality

• the meta domain: localizes ―frob every method call‖

meta call_method {all} {

frob();

}

Copyright 1997, 1998 Xerox Corporationpart iv -- implementing aspect weavers

aspect weavers

• method calls (all, per-class,

per-selector…), field accesses

(…), methods (…);

• who else is running

• where will this value go next

•

•

can require a variety of domain-transforms

• reflection

• unfolding

• CPS conversion

• partial evaluation

• abstract interpretation

•

•

Copyright 1997, 1998 Xerox Corporation

conclusions

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

programming languages
support implementation

and composition of
components

design practices support
decomposition into

componentscomponents & aspects

components & aspects

aspect-oriented design

aspect-oriented programming

summary

complex systems

www.parc.xerox.com/aop

improved separation of

concerns in both design and

implementation

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

an analogy

designing and building a simple bridge...

(what I hope aspects are like)

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

different kinds of picture

simple

statics

more

detailed

statics

simple

dynamics

m

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

a distributed digital library

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

• modeling of functionality

• modeling of control over emergent entities

different kinds of picture

title: string

author: string

isbn: int

pdf: pdf

tiff: tiff

LibraryBook
holds* *

cooperates*

*

User

accesses

*

*

Printer
uses* *

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

different kinds of program

• programming with different carvings of the system

• allows clean separation of:

– programming of functionality

– programming of control over emergent entities

class Library {

Hashtable books;

Library() {

books=new Hashtable(10);

}

.

.

}

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

}

coordinator User, Library {

mutex {checkOut, checkIn};

}

www.parc.xerox.com/aop

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

objects & aspects

• AOP enables modular control over emergent entities

• using languages that support cross-cutting modularities

www.parc.xerox.com/aop

title: string

author: string

isbn: int

pdf: pdf

tiff: tiff

LibraryBook
holds* *

cooperates*

*

User

accesses

*

*

Printer
uses* *

Copyright 1997, 1998 Xerox Corporationpart v -- conclusions

object & aspect programs

• AOP enables modular control over emergent entities

• using languages that support cross-cutting modularities

www.parc.xerox.com/aop

class Library {

Hashtable books;

Library() {

books=new Hashtable(10);

}

.

.

}

portal Printer {

void print(Book book) {

book: Book: {direct pages;}

}

}

coordinator User, Library {

mutex {checkOut, checkIn};

}

Copyright 1997, 1998 Xerox Corporation

Copyright 1997, 1998 Xerox Corporation

