
CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Dogs must

be carried

Shoes must

be worn

[Example from

Michael Jackson]

UW CSE P503 David Notkin ● Autumn 2007 2

Tommy, can you hear me?

Do you copy?

Can you hear me now?

Principle 0: Establish communication

UW CSE P503 David Notkin ● Autumn 2007 3

Communication isn’t easy

• “America and England

are two countries divided

by a common language.”
– Wilde or Shaw or Churchill

• Nouns, verbs, tenses,

moods, cultural context,

and much more

Dogs must

be carried

Shoes must

be worn

One Hour

Parking

8AM to 5PM

Swedish Train Ticket Machine

Continue Correct

UW CSE P503 David Notkin ● Autumn 2007 4

Formalism to the rescue!

• Since natural language is the culprit, instead use

mathematical languages, inference rules, logics, etc.
that are suitable to automated manipulation

i,j:1..N, i < j A[i] A[j]

• A logical formula (post-condition) for describing a sort

program

• After a sort program executes, there are no two

unordered elements in the array

UW CSE P503 David Notkin ● Autumn 2007 5

But consider the program…

• for i := 1 to N do

A[i] := i;

end

• It satisfies the post-condition, which it “shouldn’t”

• Must add another conjunct: A’= permutation(A)

• Formalization can help in some situations – but it

doesn’t and can’t eliminate communication problems

• Building the system right vs. building the right system

(Barry Boehm)

• Formalization tends to help more with the former

than the latter

UW CSE P503 David Notkin ● Autumn 2007 6

Interlude

• More principles

– A set of views on how to think (or at least how I
think) about software engineering

• Lecture plans for the course

• Expected work

• Miscellaneous wrap-up

• A one-minute paper

– What was the most important point made in class?

– What unanswered question do you still have?

– What mid-course correction, if any, would you
suggest already?

Break around 8PM

UW CSE P503 David Notkin ● Autumn 2007 7

Principle #1: know the customer

• Did you take an undergraduate software engineering
course…?

• Are there topics that you would like to see
covered/not covered in the course?

• Do you write/modify code and/or other artifacts on a
regular basis?

• What problems – technical and other – do you find
the most serious in developing, maintaining, and
shipping software and/or products that have
significant software components?

• Anything else that might help me prepare a better
course?

UW CSE P503 David Notkin ● Autumn 2007 8

Answers: sample size O(20)

• Undergraduate background: widely varies

• “Don’t make us write more code!”

• Most deal with code regularly, some deal with other

artifacts regularly

UW CSE P503 David Notkin ● Autumn 2007 9

Answers: to cover or not to cover

• Leveraging user feedback and usability study for
product design

• Measuring “quality” objectively

• Important results from research (especially
quantitatively evaluated)

• Deep underlying theory that’s normally
underappreciated or ignored by practitioners

• Project management, managing project scope

• State of the art in software process, agile methods

• Open source development

• Global software development

• Design, design patterns, design for maintainability,
reusability, testing

• Effective QA

• How long should software “live”?

• Service Oriented Architectures

• Standards and interoperability

• …

• Process

• Requirements
specifications

• Testing

• UML

UW CSE P503 David Notkin ● Autumn 2007 10

Answers: problems you face

• Lack of open communication

• Ability to prepare for and adjust to unexpected changes

• Nailing down interfaces

• Software development does not get much recognition as an art

• Quality is always what loses in the battle between development and
management

• Methods for mitigating bugs early in the software process are not well
known or accepted

• Servicing software and maintaining backwards compatibility

• Lack of scheduled design time

• Lack of proper specifications

• Lack of proper documentation for old code

• Lack of processes that allow for writing, building and testing the code
and then releasing it such that customers are not adversely affected

• Designing software so that it is very easy to test

• Loss of knowledge when people move on

• …

UW CSE P503 David Notkin ● Autumn 2007 11

Facts

• Collectively (and almost surely individually), you have

designed, developed, tested, shipped and maintained

orders of magnitude more software than I have

• Collectively (and almost surely individually), you

continue to make design decisions, write code, test

code, fix bugs, etc. on a daily basis; I don’t

• Few, if any, of you are aware of much ongoing

research in software engineering; I am

• Few, if any, of you are able to separate quickly the

good from the bad in software engineering research; I

am good (although imperfect) at this

UW CSE P503 David Notkin ● Autumn 2007 12

So, the course objectives are…

• To expose you to key approaches in software
engineering research, with the hope that one or more
of them can help you in your daily work (perhaps
immediately, perhaps in the longer term)

• To let you delve into some specific research areas
that interest you

• To help you do your job in a more thoughtful and
more systematic way, even in the absence of specific
approaches that you pick up

• To increase your ability to communicate with software
engineering researchers and other software
engineers

UW CSE P503 David Notkin ● Autumn 2007 13

Caveats

• Overall, we’ll focus on technical approaches more

than on management and process approaches

• The material, while by no means mostly mine, is

surely Notkin-centric – this is at least as much a

question of omission as inclusion

UW CSE P503 David Notkin ● Autumn 2007 14

Questions, comments, anecdotes…

• I won’t learn much if you keep quiet during lecture and

electronically outside of class

– And yes, it’s all about me!

• You won’t learn as much either

– Research shows that in lecture people have a relatively short

attention span; maybe 15-20 minutes near the beginning of a

lecture, dropping to just a few minutes later on

– The attention span “clock” can be reset by questions and

other non-”yadda yadda” interludes

• Help me continue to learn about “the customer” – all of you! – so

that we all take full advantage of your experience

UW CSE P503 David Notkin ● Autumn 2007 15

Principle #2:

calling it a crisis does not make it so

• “Software crisis” coined by Friedrich Bauer at the 1st NATO
Software Engineering Conference (1968)

• Ill-defined term that usually includes (note the similarity to your
list of problems)

– Software projects are late and over-budget

– Software doesn’t meet user needs

– Software quality is low

– Software is hard to manage

– Software is hard maintain

– Software engineering isn’t “real” engineering

– Software improves much more slowly than hardware (we
have no Moore’s Law)

• W. Gibbs, “Software's Chronic Crisis,” Scientific American (1994)

UW CSE P503 David Notkin ● Autumn 2007 16

“Crisis”

• “a vitally important or decisive stage in the

progress of anything; a turning-point; also,

a state of affairs in which a decisive change

for better or worse is imminent” [OED]

• “an unstable or crucial time or state of

affairs in which a decisive change is

impending; especially : one with the distinct

possibility of a highly undesirable outcome”

[Merriam-Webster]

– Cuban missile crisis

– Subprime lending crisis

– AIDS crisis

– …

• Is decisive change

imminent in software

engineering?

• Is there a distinct

possibility of a highly

undesirable outcome

for software

engineering?

UW CSE P503 David Notkin ● Autumn 2007 17

Decisive change is not imminent:

Fred Brooks, No Silver Bullet (1987)

“The familiar software project … is capable of becoming a monster
of missed schedules, blown budgets, and flawed products. So
we hear desperate cries for a silver bullet – something to make
software costs drop as rapidly as computer hardware costs do.

“But, as we look to the horizon of a decade hence, we see no silver
bullet. There is no single development, in either technology or in
management technique, that by itself promises even one order-
of-magnitude improvement in productivity, in reliability, in
simplicity. …

“Although we see no startling breakthroughs – and indeed, I
believe such to be inconsistent with the nature of software –
many encouraging innovations are under way. A disciplined,
consistent effort to develop, propagate, and exploit these
innovations should indeed yield an order of-magnitude
improvement. There is no royal road, but there is a road.”

UW CSE P503 David Notkin ● Autumn 2007 18

An undesirable outcome is unlikely

• Indeed, software projects do fail, are often costly and late, etc.

• At the same time, software provides enormous value

– Software is at the heart virtually all complex systems, is core
infrastructure for complex organizations, …

– “... dramatic improvements in computing power and
communication and information technology appear to have
been a major force behind [the higher U.S. growth rate in
productivity] output.” [A. Greenspan, 1998]

– Hoover’s reports (2007): “Computer software production in
the US involves about 50,000 companies with combined
annual revenue of about $180 billion” [Note: this doesn’t
included related industries like software services]

• If this is a crisis, let’s create another one!

– We don’t want AIDS, we don’t want broad defaulting of
loans, and we didn’t want missiles in Cuba

– … but we do want software!

UW CSE P503 David Notkin ● Autumn 2007 19

Woody Allen, Annie Hall

• “The food in this place is really terrible.”

“Yes, and such small portions.”

• This captures much of the confusion about software:

it’s broadly believed to be of low quality, but there is a

voracious appetite for it

• So, even if it’s not a “crisis,” we need to and we can

do better, perhaps much better

UW CSE P503 David Notkin ● Autumn 2007 20

Principle #3:

Engineering is design under constraints

• You are intimately, although at times implicitly, aware

of your constraints: customer needs, shipping

deadlines, resource limitations (memory, power,

money, etc.), compatibility, reward structure,

organizational culture, and much more…

• I do not know your constraints, which makes it at

least hard to know which approaches and techniques

can be effectively applied in your context

UW CSE P503 David Notkin ● Autumn 2007 21

A consequence of varied constraints

• There is no single right way to
engineer software: no best
programming language, design
method, software process,
testing approach, team
structure, etc.

• This does not imply that every
approach is good under some
constraints

• Nor does it suggest that there
are no consistent themes
across effective approaches

• Committing to a “best
approach” can be limiting

• “Please don't fall into the trap of
believing that I am terribly
dogmatical about [the goto
statement]. I have the
uncomfortable feeling that others
are making a religion out of it, as if
the conceptual problems of
programming could be solved by a
single trick, by a simple form of
coding discipline!” [E. Dijkstra]

• “Don’t get your method advice from
a method enthusiast. The best
advice comes from people who
care more about your problem than
about their solution.” [M. Jackson,
Principle of Dispassionate
Methodology]

UW CSE P503 David Notkin ● Autumn 2007 22

An example

• The passionate methodologists include many (but not all)
advocates of typed programming languages and formal
methods

– They have pushed research, and in some cases industry, forward
in important and impressive ways

• At the same time, I believe that they work under a questionable
assumption, which is largely captured by Dijkstra:

– “Program testing can be used to show the presence of bugs, but
never to show their absence!” [1970]

– In other words, proving properties across all possible executions is
good, while sampling across executions is inherently flawed

• Very roughly, this pushed the computing research community
towards static and away from dynamic approaches – in a sense,
an entire class of approaches was discounted wholesale

– Need I note that most of industry uses dynamic approaches, often
exclusively?

UW CSE P503 David Notkin ● Autumn 2007 23

Sources of unsoundness:

Dwyer et al. (2007)

• Matt Dwyer’s talk at ICSE 2007 put much of this

issue in perspective: in my words, he argues that it’s

all sampling

• Dynamic techniques sample across executions

(behaviors)

• Static techniques sample across properties

(requirements)

• What we need to know is the degree of unsoundness

– That is, we need to know what we know, and what

we don’t know

• The following few slides are from Dwyer’s talk

Its about Coverage

• Nobody believes that one technique will “do it all”

• A suite of techniques will be required

• If techniques involve sampling how do we know

– They cover the breadth of software requirements

– They cover the totality of program behavior

A unified theory of behavioral coverage is

needed

Behaviors

Behaviors

Deadlock

Freedom from races

Data structure invariants

Behaviors

UW CSE P503 David Notkin ● Autumn 2007 28

Principle #4: software is different

(until and unless proven otherwise)

• Dominant discipline

• Moore’s Law for software?

• Specialized vs. standardized design

• Continuing change

• Maturity and relevance of the field

• Software structures not subject to physical laws

UW CSE P503 David Notkin ● Autumn 2007 29

Dominant discipline: Stu Feldman

103 Lines of Code Mathematics

104 LOC
Science

105 LOC
Engineering

106 LOC Social Science

107 LOC Politics

108 LOC, 109 LOC, … ???, ???, …

UW CSE P503 David Notkin ● Autumn 2007 30

Moore’s Law

• “…the number of transistors on a chip doubles about

every two years” (Moore, 1965)

• There’s no Moore’s Law for … automobile or aircraft

design, power engineering, medical technology, or

(almost?) anything other than chip design – that is,

chip design is the singularity, not software

• It is at least arguable, too, that hardware

improvements that focus primarily on speed force

contribute to software’s complexity

UW CSE P503 David Notkin ● Autumn 2007 31

Design space complexity:

Specialized vs. standardized [Michael Jackson]

• Designing both automobiles and bridges requires

specialized knowledge

• Automobile design is standardized: the designers

know virtually everything about the context in which

the automobile will be used: expected passenger

weights, what kind of roads will be encountered, etc.

• But bridge design is not standardized: the designers

must understand the specific location in which the

bridge will be built: the length of the span, the kind of

soil, the expected traffic, etc.

• This leads to fundamentally different design spaces

UW CSE P503 David Notkin ● Autumn 2007 32

Software design

• Software design is widely and wildly non-standardized

– Yes, it is also specialized

• Figuring out what the user wants and needs is hard and is
almost always part of the job; for most software systems, this
goes far beyond designing a bridge for a specific location

– Again, Boehm’s distinction between building the system right
vs. building the right system

• A classic exception is some classes of compilers

– The PQCC project at CMU (Wulf et al., 1980) led to the
formation of Tartan Laboratories, which was acquired by TI
(1996) primarily to construct C compilers for DSPs – in
essence, this became standardized

– Jackson suggests that “compiler engineering” (and such)
might make sense, in contrast to “software engineering”

UW CSE P503 David Notkin ● Autumn 2007 33

“All useful programs undergo continuing

change”: Belady and Lehman (1976)

• A significant amount of “software maintenance” addresses

changes for which roughly analogous changes would be

considered non-routine in most other fields

• Augmenting a radio to include

a television

• Adding floors to skyscrapers,

lanes to bridges

• Accommodating new aircraft

at airports

• Adding Cyrillic-based

languages to European Union

documents

• Adding support to a browser

for an entirely new document

type (e.g., digital pens)

• Scaling software systems by

an order of magnitude (pick

your dimension)

• Supporting the web in a

desktop productivity suite

• Adding support for Asian

languages to a tool

UW CSE P503 David Notkin ● Autumn 2007 34

“So damned relevant”: Bill Wulf

• For better or for worse, the software industry became

relevant incredibly quickly (on an historical basis)

• The mashup of development, research, startups, and

more appears to be different from other “engineering”

fields (on an historical basis)

• Open question: to what degree, if any, are the

problems faced by the software field a matter of its

immaturity? If this is indeed an issue, are there ways

to cause us to mature more quickly?

UW CSE P503 David Notkin ● Autumn 2007 35

Software and physical laws

• Physical systems (bridges, automobiles, buildings, etc.) are constrained
by largely well-known and well-understood laws of physics

– Many of these laws rely on notions of continuity, where small
changes in an input generally – and under well-defined conditions –
lead to a small change in the output

– Continuous mathematics is a powerful model for these systems

• Software instead works in a discrete world, where small changes in an
input often lead to discontinuous changes in the output

– The state spaces are enormous, and we have far less mathematics
on which to rely (although we’re making some progress)

• Failure modes differ – failure of physical components vs. design flaws

• “Software is like entropy. It is difficult to grasp, weighs nothing, and
obeys the second law of thermodynamics; i.e., it always increases.”
[Norman Augustine]

UW CSE P503 David Notkin ● Autumn 2007 36

Principle #5: software is often the fall guy

• Software
development is
condemned in
no uncertain
terms

• It’s a software
crisis, right?

 “The Standish Group [1994] research shows a
staggering 31.1% of projects will be canceled before
they ever get completed. Further results indicate
52.7% of projects will cost 189% of their original
estimates. The cost of these failures and overruns are
just the tip of the proverbial iceberg. The lost
opportunity costs are not measurable, but could easily
be in the trillions of dollars. One just has to look to the
City of Denver to realize the extent of this problem.
The failure to produce reliable software to handle
baggage at the new Denver airport is costing the city
$1.1 million per day”

 “For nine months, this Gulliver has been held captive
by Lilliputians-errors in the software that controls its
automated baggage system.” [Gibbs, “Software’s
Chronic Crisis”, Scientific American, 1994]

UW CSE P503 David Notkin ● Autumn 2007 37

Let’s pile on…
Jussi Koskinen ● http://www.cs.jyu.fi/~koskinen/smcosts.htm

• Annual software maintenance cost in USA has been

estimated to be more than $70 billion (Sutherland,

1995; Edelstein, 1993).

• E.g. in USA, the federal government alone spent

about $8.38 billion during a 5-year period to the

Y2K-bug corrections.

• At company-level, e.g. Nokia Inc. used about $90

million for preventive Y2K-bug corrections.

UW CSE P503 David Notkin ● Autumn 2007 38

Was it (only) software?

• The Denver system was 14 times bigger than SFO’s,

and the first to serve an entire airport
[Myerson, New York Times, 1994]

• And it was the first to

– have carts slow down but not stop for bags

– use networked desktops rather than a mainframe

– use radio links

– handle oversized bags … and more

• Much of this didn’t go smoothly – but software took

essentially all of the blame

UW CSE P503 David Notkin ● Autumn 2007 39

Therac-25 – radiation therapy machine
Leveson and Turner (1993)

• A handful of patients received potentially lethal radiation doses when
the machine before being targeted – several died

• Contributing problems included

– The code wasn’t independently reviewed

– The software wasn’t considered during reliability modeling

– A physical interlock present in earlier models was removed; the
interlock had masked software defects in those earlier models

– The software could not verify that sensors were working correctly

– Experienced operators could enable a dangerous race condition –
evidently testing was done with inexperienced operators

– A flag variable was set by incrementing it, with overflow weakening
the error checking

• Yes, software was partially culpable, but so was the co-design, the
management and more – but at least popularly, this is viewed as a
tragic example of a software failure

UW CSE P503 David Notkin ● Autumn 2007 40

Mars Polar Lander (1999)

• “…the most likely cause of the failure of the mission

was a software error that mistakenly identified the

vibration caused by the deployment of the lander's

legs as being caused by the vehicle touching down

on the Martian surface, resulting in the vehicle's

descent engines being cut off while it was still 40

meters above the surface, rather than on touchdown

as planned.” [Wikipedia]

• But an equally reasonable view is that it was an error

in the sensors that mistakenly generated the vibration

before touchdown

UW CSE P503 David Notkin ● Autumn 2007 41

Why? And why care? In part …

• Co-design often pushes hard stuff into software – so it’s harder

(after all, it’s “just” software)

– And complex stuff is more likely to have flaws

• Co-design freezes non-software parts early, so software must fix

any problems in those parts (after all, software is “soft”)

• Software comes last, so it’s often blamed

• Knee-jerk reactions to software are bad for everybody – we

need more accuracy, more honesty

– As software professionals, we need to be articulate about

what we do well and what we do poorly

– The root cause is not always the same as the direct cause

UW CSE P503 David Notkin ● Autumn 2007 42

What about software-only systems?

• Are these arguments only valid for complex systems
that include software?

• Some of them are, perhaps

• But given the non-standardization of software design,
the difficulty of identifying and addressing users’
needs, the difficulty imposed by the discrete nature of
software, and more, simple assertions that software
is to blame is naïve and will not likely help us improve

• Once again, one must remember that in general one
should not look at costs alone, but rather look at
value – and as an industry, software clearly provides
enormous value

UW CSE P503 David Notkin ● Autumn 2007 43

Principle #6: we need better ways to think about

the cost of software maintenance

• Not only is software absolutely costly, as seen above

• But some aspects, such as software

maintenance/evolution are relatively too costly, too

UW CSE P503 David Notkin ● Autumn 2007 44

Evolution dominates software costs
Jussi Koskinen ● ibid

Year Proportion of
software
maintenance costs

Definition Reference

2000 >90% Software cost devoted to system maintenance &
evolution / total software costs

Erlikh (2000)

1993 75% Software maintenance / information system
budget

(in Fortune 1000 companies)

Eastwood
(1993)

1990 >90% Software cost devoted to system maintenance &
evolution / total software costs

Moad (1990)

1990 60-70% Software maintenance / total management
information systems (MIS) operating budgets

Huff (1990)

1988 60-70% Software maintenance / total management
information systems (MIS) operating budgets

Port (1988)

1984 65-75% Effort spent on software maintenance / total
available software engineering effort.

McKee (1984)

1981 >50% Staff time spent on maintenance / total time (in
487 organizations)

Lientz &
Swanson
(1981)

1979 67% Maintenance costs / total software costs Zelkowitz et al.
(1979)

UW CSE P503 David Notkin ● Autumn 2007 45

Thought experiments

• What percentages would demonstrate “success” in

software evolution? Is higher better or worse? Is

there a numeric goal?

– For extra credit: consider that software testing

accounts for roughly half the total cost of software

development [Beizer 90]

• What absolute numbers would demonstrate

“success” in software engineering in general and

software evolution in particular?

UW CSE P503 David Notkin ● Autumn 2007 46

My rule of thumb: proportional cost

• What seems to be a genuine concern is when the

cost of changing the implementation of an existing

system is out of proportion with the apparent cost of

the change in the requirements

– Y2K – essentially no change in the requirements

– Converting a single-threaded program to a

distributed, reliable system over a wide-area LAN

• This is very hard to make operational

– How to think about apparent costs? Apparent

costs to whom?

– Realistic measures of actual costs?

UW CSE P503 David Notkin ● Autumn 2007 47

Principle #7: we lie

• We lie about software

structure to our students, to

our non-technical managers,

etc.

• Ex: Should it be a surprise

when a non-technical

manager believes that a

change will be simple, based

on design diagrams?

• This directly affects the

notion of “apparent costs” in

the previous slide

docs.sun.com/source/801-7837/images/6-1-8D82.gif

UW CSE P503 David Notkin ● Autumn 2007 48

Beauty or truth?

UW CSE P503 David Notkin ● Autumn 2007 49

Maybe a little of both:

Software reflexion models [Murphy 1995]

UW CSE P503 David Notkin ● Autumn 2007 50

Lecture schedule and topics:
Subject to change

• October 2: Introduction and Overview

• October 9: Requirements and Specifications I

• October 16: Requirements and Specifications II

• October 23: Design I

• October 30: Design II

• November 6 (likely taught from the Microsoft site):
Software Evolution

• November 13: Analysis and Tools

• November 20: Quality assurance/testing

• November 27: Mining software repositories

• December 4: TBD

UW CSE P503 David Notkin ● Autumn 2007 51

Requirements and specifications

• More software systems fail because they don’t meet the needs

of their users than because they aren’t implemented properly

• A brief history in proving programs correct

– An expected panacea for software that didn’t pan out

– But has provided some benefits

• A look at formal specifications, with a focus on two forms

– Model-based specifications (Z) – we’ll come back to

automatic analysis of specifications like these later on

– Overview of state machine based specifications – including

automatic analysis using model checking

• A brief overview of requirements engineering issues

UW CSE P503 David Notkin ● Autumn 2007 52

Design

• Basic issues in design, including some historical

background

– Well-understood techniques such as information

hiding, layering, event-based techniques

• More recent issues in design

– Aspect oriented approaches

– Architecture, patterns, frameworks

UW CSE P503 David Notkin ● Autumn 2007 53

Evolution

• The objective is to use an existing code base as an

asset

• Basic background

• Approaches to change

– Reverse engineering

– Visualization

– Software summarization

• Change as a first-class notion

• Augmenting Dwyer’s view with change

• Longitudinal analysis

UW CSE P503 David Notkin ● Autumn 2007 54

Analysis and tools

• Tools and analysis

• The analysis part might be close to the specification

topics covered earlier in the quarter, but the focus will

be much, much closer to the source code

• Static vs. dynamic analysis

• Underlying representations

• Example tools

UW CSE P503 David Notkin ● Autumn 2007 55

Quality assurance/testing

• What do we know, and when do we know it?

• Building confidence over time

• Details TBD

UW CSE P503 David Notkin ● Autumn 2007 56

Mining software repositories:
A relatively new hot research topic

• “Research is now proceeding to uncover the ways in which

mining [software] repositoriescan help to understand software

development, to support predictions about software

development, and to plan various aspects of software projects.”

[MSR 2007 web page]

– Broadly defined to include code, defect databases, version

control information, programmer communications, etc.

• Underlying premise: we believe there is something – actually, a

lot of things – that can be learned from studying these

repositories

• But it presents a paradox – if we think most software is low

quality, how can we learn by studying the repositories?

UW CSE P503 David Notkin ● Autumn 2007 57

Final lecture (December 4)

• TBD

• Jetlagged

• Project presentations?

• Guest speaker?

• Your ideas?

UW CSE P503 David Notkin ● Autumn 2007 58

Final examination

• By University rule, an instructor is allowed to

dispense with a final examination at the scheduled

time (6:30-8:20PM, December 13, 2007) with

unanimous consent of the class

• If you prefer to have a final examination
for the entire class, you must let me know
by the 6:00PM before the second lecture
(October 9, 2007)

UW CSE P503 David Notkin ● Autumn 2007 59

Assigned work (barring a final):
Four @ 25% each

• Essay on software engineering (1-2 people)

– Write a 5-10 page essay on what advances in key

attributes (productivity, quality, etc.) are within

reach by 2010. The essay must not be "pie in the

sky" nor primarily personal opinion; rather, it

should be scholarly

– We will post all essays for comments

• Tool-based assignment (individual). Details

forthcoming (likely to use Daniel Jackson's Alloy)

UW CSE P503 David Notkin ● Autumn 2007 60

Other two assignments

• Two state-of-the-research reports (one in groups of
1-3 people, the other in groups of 2-3 people).

• These are secondary research reports on an
approved topic based on significant reading of
various pertinent papers and materials (and perhaps
some hands-on experience)

• These scholarly reports provide information about the
topic and your analysis of it, complete with citations,
open questions, etc.

• The list of potential topics is enormous

• We will make these reports available to the entire
class and request comments

UW CSE P503 David Notkin ● Autumn 2007 61

Note

• In general, the topics covered in lecture will not have

associated required readings

• Instead, your in-depth readings will be based on the

topics you choose for your two research assignments

(and to a lesser degree on the essay assignment)

• I am happy to suggest readings on the lecture

material to you

UW CSE P503 David Notkin ● Autumn 2007 62

This and that

• Stay tuned to the web page

• Jonathan Beall is our TA

• I will try to be in my office (CSE542, 206-685-3798)

for the hour or so before each class

– I am happy to take email and phone calls and to

make appointments, as needed

