
4/16/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight’s agenda

• Bounded model checking: Alloy

– Why might we care?

– Slides from elsewhere – a quick-ish run through,

focusing on what Alloy can do and why we might

care more than on how it does it

– The next assignment

• Software design: history and (semi-)free-for-all

• One-minute paper (post on wiki or email to me by

close of business tomorrow): Key point? Open

question? Mid-course correction?

UW CSE P503 David Notkin ● Spring 2009 2

Remember

• You are not yet done with the first assignment

• ―one-fifth of your grade for the essay will depend on

comments you make (as of Wednesday April 22,

2009 at 6PM) via the wiki on essays written by your

classmates‖

– Mark them using the wiki’s ―Your signature with

timestamp‖ stamp

– Be constructive

UW CSE P503 David Notkin ● Spring 2009 3

Bounded model checking

• The TCAS/EPD work avoided most abstraction by

starting with finite state specifications

• SLAM/SDV and other model checkers that work on

source code must abstract the program to get to a

finite state model

• Bounded model checking instead accepts an infinite

state machine along with a formula to check – and

then truncates the search space

– Guaranteed to find errors within the bound

– Errors outside the bound are not found

– Small scope hypothesis: a high proportion of bugs can be

found by testing a program for all test inputs within some

small scope

UW CSE P503 David Notkin ● Spring 2009 4

4/16/2009

2

Why might we care?

• See Daniel Jackson’s very recent article for this

week’s class for his view – dependable software at

lower cost

UW CSE P503 David Notkin ● Spring 2009 5

My general view

• There are numerous important situations in which we

neglect clarity and pay a long-term cost – and many

of these situations are recognizable early on

– What is a Metro bus route? An airplane trip?

– How do pages, paragraphs, etc. interact with one

another in terms of formatting? Style sheets and

web pages?

– Which users are authorized to perform what

operations on what directories and files?

• In such situations, an investment in clarity is almost

surely worthwhile – and Alloy-like systems can help

achieve the needed understanding and clarity
UW CSE P503 David Notkin ● Spring 2009 6

Designations: Michael Jackson

• A designation defines

a term using a rule

• Does a phenomenon

satisfy the

designation?

• Allows refutable

statements to be

made about the

requirements

• Should define as few

as possible

x is a human being Human(x)

x is male Male(x)

x is female Female(x)

x is the genetic mother of y

Mother(x,y)

x is the genetic father of y

Father(x,y)

UW CSE P503 David Notkin ● Spring 2009 7

x,y (((Human(x) Mother(x,y))

(Female(x) Human(y)))

A refutable statement

Definitions: Michael Jackson

• Definitions define terms in terms of existing

designations: they are macros, in essence

• They can simplify what you can talk about but don’t

fundamentally change what you can talk about

• Definitions can’t be right or wrong, just well-formed

(or not) and useful (or not)

• Brother(x,y)

Male(x) f (Father(f,x) Father(f,y)

m (Mother(m,x) Mother(m,y)) x y

UW CSE P503 David Notkin ● Spring 2009 8

4/16/2009

3

Clarity

• Part of conceptual integrity?

• Absence a contributor to software disasters?

UW CSE P503 David Notkin ● Spring 2009 9

Alloy tutorial (from Alloy site)

• Session 1 - Intro & Logic (PDF)

• Session 2 - Language & Analysis (PDF)

• Session 3 - Static Modeling (PDF)

• Session 4 - Dynamic Modeling (PDF)

• (Only about 130 slides, so it’ll be quick :-)

UW CSE P503 David Notkin ● Spring 2009 10

Your Alloy assignment: HIPAA

• Health Insurance Portability and Accountability Act of 1996

(HIPAA) ―provides federal protections for personal health

information held by covered entities and gives patients an array

of rights with respect to that information. At the same time, the

[it] is balanced so that it permits the disclosure of personal

health information needed for patient care and other important

purposes.‖

• Figuring out precisely what is and is not permitted is a

complicated issue facing software developers who are dealing

with HIPAA regulations – failure can be costly both to

organizations that can face penalties for non-compliance and

also to individuals whose personal health information is

misused.

• Can Alloy help induce clarity among key aspects of HIPAA?

UW CSE P503 David Notkin ● Spring 2009 11

Your Alloy assignment: model

• Individuals

• Personal representatives of individuals (for example, parents of

minors)

• Patient information that your health care providers can share

with each other

• Patient information that your health care providers can share

externally only with your explicit authorization

• …see assignment for details

• There is much more to HIPAA – for instance, handling

subpoenas, information used for research, employment

information, etc. – but these are not required to be dealt with in

your model

• Neither are you required to provide a dynamic model (that is,

with operations)

UW CSE P503 David Notkin ● Spring 2009 12

http://alloy.mit.edu/fm06/s1_logic.pdf
http://alloy.mit.edu/fm06/s2_language.pdf
http://alloy.mit.edu/fm06/s3_static.pdf
http://alloy.mit.edu/fm06/s4_dynamic.pdf

4/16/2009

4

Your Alloy assignment: odds & ends

• Suporn is the ―go to‖ person for Alloy questions, etc.

(although I’ll help, too, of course)

• Use the wiki and/or mailing list to help each other

with Alloy issues

• Can work in groups

• Must turn in not only the final model, but also some

intermediate models that characterize your progress

and a brief assessment of Alloy

– This assessment can be done independently by

members of a group but combined in the final

version that is turned in

UW CSE P503 David Notkin ● Spring 2009 13

Will the formalisms ever stop…?

UW CSE P503 David Notkin ● Spring 2009 14

Notkin’s P503

Promise

Only Theoretical

Material

Satisfy?

YES

NO

Counter

example

UW CSE P503 David Notkin ● Spring 2009 15

Word association: in groups

• Generate words that you think of when you hear the

term (software) ―design‖

UW CSE P503 David Notkin ● Spring 2009 16

What is design?

• OED

– Noun: nine definitions, 1462 words

– Verb: 16 definitions, 2165 words

• Does your organization have a clear definition?

– Do you?

• Does your organization have an identifiable design

phase?

– Do you?

• Does this matter?

4/16/2009

5

UW CSE P503 David Notkin ● Spring 2009 17

Software design: some key points

• Addresses complexity – that is, design is primarily for

people rather than for computers

• Occurs at multiple levels – that is, design decisions of

different sorts are made frequently throughout the

lifecycle

• Selection criteria are multifaceted, often hard to

capture and difficult to tradeoff – performance,

modifiability, reliability, safety, understandability,

compatibility, robustness, …

Complexity

• Software entities are more

complex for their size than

perhaps any other human

construct, because no two

parts are alike (at least

above the statement level).

If they are, we make the two

similar parts into one… In

this respect software

systems differ profoundly

from computers, buildings, or

automobiles, where repeated

elements abound [Brooks].

• …as soon as the

programmer only needs to

consider intellectually

manageable programs, the

alternatives he is choosing

from are much, much easier

to cope with [Dijkstra].

• The complexity of the

software systems we are

asked to develop is

increasing, yet there are

basic limits upon our ability

to cope with this complexity.

How then do we resolve this

predicament [Booch]?

UW CSE P503 David Notkin ● Spring 2009 18

UW CSE P503 David Notkin ● Spring 2009 19

Conceptual integrity

• Brooks and others assert that conceptual integrity is

a critical criterion in design

– It is better to have a system omit certain

anomalous features and improvements, but to

reflect one set of design ideas, than to have one

that contains many good but independent and

uncoordinated ideas [Brooks].

• Such a design often makes it far easier to decide

what is easy and reasonable to do as opposed to

what is hard and less reasonable to do – it reduces

complexity

– May not please management

Rationalism vs. empiricism

• Brooks’ 1993 talk ―The Design of Design‖

• rationalism — the doctrine that knowledge is acquired

by reason without resort to experience [WordNet]

• empiricism — the doctrine that knowledge derives

from experience [WordNet]

UW CSE P503 David Notkin ● Spring 2009 20

4/16/2009

6

Examples

• Life

– Aristotle vs. Galileo

– France vs. Britain

– Descartes vs. Hume

– Roman law vs.

Anglo-Saxon law

• Software (Wegner)

– Prolog vs. Lisp

– Algol vs. Pascal

– Dijkstra vs. Knuth

– Proving programs vs.

testing programs

UW CSE P503 David Notkin ● Spring 2009 21

Brooks: empiricist

• A ―thoroughgoing, died-in-the-wool empiricist‖

• ―Our designs are so complex there is no hope of

getting them right first time by pure thought. To

expect to is arrogant.‖

• ―So, we must adopt design-build processes that

incorporate evolutionary growth …‖

– ―Iteration, and restart if necessary‖

– ―Early prototyping and testing with real users‖

– ―Plan to throw one away, you will anyway‖

UW CSE P503 David Notkin ● Spring 2009 22

Divide and conquer

• The technique of mastering complexity has been

known since ancient times: Divide et impera (Divide

and Rule) [Dijkstra]

• We have to decompose large systems to be able to

build them – decrease size of tasks, support

independent testing and analysis, separate work

assignments, ease understanding, …

• For software, decomposition techniques are distinct

from those used in physical systems – fewer

constraints are imposed by the material

UW CSE P503 David Notkin ● Spring 2009 23 UW CSE P503 David Notkin ● Spring 2009 24

Composition

• Divide and conquer. Separate your concerns. Yes.

But sometimes the conquered tribes must be reunited

under the conquering ruler, and the separated

concerns must be combined to serve a single

purpose [M. Jackson]

• Jackson’s view of composition as printing with four-

color separation

• Composition in programs is not as easy as

composition in logic

4/16/2009

7

How do we select a decomposition?

• Determine the desired criteria and select a

decomposition (design) that will achieve those criteria

– Whence the potential decomposition?

• In practice, it’s hard to

– Determine the desired criteria with precision

– Tradeoff among various conflicting criteria

– Figure out if a design satisfies given criteria

– Find a better one with respect to the criteria

• In practice, it’s easy to build something designed

pretty much like the last one (or at least a recent one)

UW CSE P503 David Notkin ● Spring 2009 25 UW CSE P503 David Notkin ● Spring 2009 26

Semi-continuous

• High-level (―architectural‖) design

– What pieces?

– How connected?

• Low-level design

– Should I use a hash table or binary search tree?

• Very low-level design

– Variable naming, specific control constructs, etc.

– About 1000 design decisions at various levels are

made in producing a single page of code

UW CSE P503 David Notkin ● Spring 2009 27

Alan Perlis quotations

• If you have a procedure with 10 parameters, you

probably missed some.

• One man's constant is another man's variable.

• There are two ways to write error-free programs; only

the third one works.

• When someone says ―I want a programming

language in which I need only say what I wish done,‖

give him a lollipop.

• Simplicity does not precede complexity, but follows it.

UW CSE P503 David Notkin ● Spring 2009 28

Change: a key criterion

• …accept the fact of change as a way of life, rather

than an untoward and annoying exception [Brooks].

• Software that does not change becomes useless

over time [Belady and Lehman].

• It is generally believed that to accommodate change

one must anticipate possible changes

– Counterpoint: Extreme Programming

• By anticipating (and perhaps prioritizing) changes,

one defines additional criteria for guiding the design

activity

• It is not possible to anticipate all changes

4/16/2009

8

UW CSE P503 David Notkin ● Spring 2009 29

Structure: a design keystone

• The focus of most software design approaches is

structure

• What are the components and how are they put

together?

• Behavior is important, but largely indirectly

UW CSE P503 David Notkin ● Spring 2009 30

Traditional properties of design

• Cohesion

• Coupling

• Complexity

• Correctness

• Correspondence

UW CSE P503 David Notkin ● Spring 2009 31

Cohesion

• The reason that elements are found together in a

module

– Ex: coincidental, temporal, functional, …

• The details aren’t critical, but the intent is useful

• During maintenance, one of the major structural

degradations is in cohesion

– Need for ―logical remodularization‖

UW CSE P503 David Notkin ● Spring 2009 32

Coupling

• Strength of interconnection between modules

• Hierarchies are touted as a wonderful coupling

structure, limiting interconnections

– But don’t forget about composition, which requires

some kind of coupling

• Coupling also degrades over time

– ―I just need one function from that module…‖

– Low coupling vs. no coupling

4/16/2009

9

UW CSE P503 David Notkin ● Spring 2009 33

Unnecessary coupling hurts

• Propagates effects of changes more widely

• Harder to understand interfaces (interactions)

• Harder to understand the design

• Complicates managerial tasks

• Complicates or precludes reuse

UW CSE P503 David Notkin ● Spring 2009 34

It’s easy to...

• ...reduce coupling by calling a system a single

module

• …increase cohesion by calling a system a single

module

• No satisfactory measure of coupling

– Either across modules or across a system

Coupling and cohesion

• Do you think about these? Explicitly?

• Any tools?

UW CSE P503 David Notkin ● Spring 2009 35 UW CSE P503 David Notkin ● Spring 2009 36

Complexity

• Few if any useful measures of design/program

complexity exist

• There are dozens of such measures; e.g., McCabe’s

cyclomatic complexity = E - N + p

– E = the number of edges of the CFG

– N = the number of nodes of the CFG

– p = the number of connected components

• My understanding is that, to the first order, most of

these measures are linearly related to ―lines of code‖

• No way to distinguish accidental from essential

complexity

4/16/2009

10

Complexity

• Do you think about this? Explicitly?

• Any tools?

UW CSE P503 David Notkin ● Spring 2009 37 UW CSE P503 David Notkin ● Spring 2009 38

Correctness

• Well, yeah

• Even if you ―prove‖ modules are correct, composing

the modules’ behaviors to determine the system’s

behavior is hard

• Leveson and others have shown clearly that a

system can fail even when each of the pieces work

properly – this is because many systems have

―emergent‖ properties

• Arguments are common about the need to build

―security‖ and ―safety‖ and … in from the beginning

Correspondence

• ―Problem-program mapping‖

• The way in which the design is associated with the

requirements

• The idea is that the simpler the mapping, the easier it

will be to accommodate change in the design when

the requirements change

UW CSE P503 David Notkin ● Spring 2009 39 UW CSE P503 David Notkin ● Spring 2009 40

Functional decomposition

• Divide-and-conquer based on functions

– input; compute; output

• Then proceed to decompose compute

• This is stepwise refinement (Wirth, 1971)

– In essence, refining until implementable directly in

a programming language (or on an architecture)

• There is an enormous body of work in this area,

including many formal calculi to support the approach

– Closely related to proving programs correct

• More effective in the face of stable requirements

4/16/2009

11

UW CSE P503 David Notkin ● Spring 2009 41

Information hiding

• What do you think it is?

UW CSE P503 David Notkin ● Spring 2009 42

Information hiding

• Information hiding is perhaps the most important

intellectual tool developed to support software design

[Parnas 1972]

– Makes the anticipation of change a centerpiece in

decomposition into modules

• Provides the fundamental motivation for abstract data

type (ADT) languages

– And thus a key idea in the OO world, too

• The conceptual basis is key

UW CSE P503 David Notkin ● Spring 2009 43

Basics of information hiding

• Modularize based on anticipated change

– Fundamentally different from Brooks’ approach in

OS/360 (see old and new MMM)

• Separate interfaces from implementations

– Implementations capture decisions likely to

change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

• Modules are also work assignments

UW CSE P503 David Notkin ● Spring 2009 44

Anticipated changes

• The most common anticipated change is ―change of

representation‖

– Anticipating changing the representation of data

and associated functions (or just functions)

– Again, a key notion behind abstract data types

• Ex:

– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings

4/16/2009

12

Information hiding: issues

• Can we effectively anticipate changes?

• What is the underlying cost model and is it

reasonable?

• The semantics of the module remain unchanged

when implementations are changed: the client should

only care if the interface is satisfied

– But what captures the semantics of the module?

The signature of the interface? Performance?

What else?

• One implementation should satisfy multiple clients,

which should only care if the interface is satisfied

UW CSE P503 David Notkin ● Spring 2009 45

Representation change less common

• We have significantly more knowledge about data

structure design than we did 25 years ago

• Memory is less often a problem than it was

previously, since it’s much less expensive

• Therefore, we should think twice about anticipating

that representations will change

– This is important, since we can’t simultaneously

anticipate all changes

UW CSE P503 David Notkin ● Spring 2009 46

UW CSE P503 David Notkin ● Spring 2009 47

Other anticipated changes?

• Information hiding isn’t only ADTs

• Algorithmic changes

– (These are almost always part and parcel of ADT-

based decompositions)

– Monolithic to incremental algorithms

– Improvements in algorithms

• Replacement of hardware sensors

– Ex: better altitude sensors

• …

UW CSE P503 David Notkin ● Spring 2009 48

Best to change implementation?

• Usually, perhaps, but not always the lowest cost

• Changing a local implementation may not be easy

• Some global changes are straightforward:

mechanically or systematically

• Rob Miller’s simultaneous text editing

• Bill Griswold’s work on information transparency

4/16/2009

13

Information hiding reprise

• It’s probably the most important design technique we

know

• And it’s broadly useful

• It raised consciousness about change

• But one needs to evaluate the premises in specific

situations to determine the actual benefits (well, the

actual potential benefits)

UW CSE P503 David Notkin ● Spring 2009 49

Dependence on implementation

• Gregor Kiczales: open implementation

• Clients indeed depend on some aspects of the

underlying implementations in a broad variety of

domains

• Decompose into base interface (the ―real‖ operations)

and the meta interface (the operations that let the

client control aspects of the implementation)

• Arose from work in (roughly) reflection in the Meta-

Object protocol (MOP) and led to the development of

aspect-oriented programming

UW CSE P503 David Notkin ● Spring 2009 50

UW CSE P503 David Notkin ● Spring 2009 51

Information Hiding and OO

• Are these the same? Not really

– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)

– Not necessarily based on change

• But they are obviously related (separating interface

from implementation, e.g.)

• What is the relationship between sub- and super-

classes?

UW CSE P503 David Notkin ● Spring 2009 52

Layering [Parnas 79]

• A focus on information hiding modules isn’t enough

• One may also consider abstract machines

– In support of program families, which are systems

that have ―so much in common that it pays to

study their common aspects before looking at the

aspects that differentiate them‖

• Still a focus on anticipated change

4/16/2009

14

UW CSE P503 David Notkin ● Spring 2009 53

The uses relation

• A program A uses a program B if the correctness of A
depends on the presence of a correct version of B

• Requires specification and implementation of A and
the specification of B

• Again, what is the ―specification‖? The interface?
Implied or informal semantics?

uses vs. invokes

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

ipAddr := lookup(hostName)

endif

• These relations often but do not always coincide

• Invocation without use: name service with cached

hints

• Use without invocation: examples?

UW CSE P503 David Notkin ● Spring 2009 54

UW CSE P503 David Notkin ● Spring 2009 55

Parnas’ observation

• A non-hierarchical uses relation makes it difficult to

produce useful subsets of a system

• So, it is important to design the uses relation using

these criteria

– A is essentially simpler because it uses B

– B is not substantially more complex because it

does not use A

– There is a useful subset containing B but not A

– There is no useful subset containing A but not B

UW CSE P503 David Notkin ● Spring 2009 56

Modules and layers interact?

• Information hiding

modules and

layers are distinct

concepts

• How and where do

they overlap in a

system?
Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

4/16/2009

15

A key point

• Not all boxes in a design are the same thing

• Not all arrows in a design are the same thing

• Imprecision in communication about these boxes and

arrows can add significant confusion to a software

design process and the resulting design

• Oh, that’s the issue of clarity again

UW CSE P503 David Notkin ● Spring 2009 57 UW CSE P503 David Notkin ● Spring 2009 58

Language support?

• We have lots of language support for information

hiding modules

– C++ classes, Ada packages, etc.

• We have essentially no language support for layering

– Operating systems provide support, primarily for

reasons of protection, not abstraction

– Big performance cost to pay for ―just‖ abstraction

Design questions/topics/insights?

UW CSE P503 David Notkin ● Spring 2009 59

Don’t forget…

• One-minute paper (post on wiki or email to me by

close of business tomorrow): Key point? Open

question? Mid-course correction?

UW CSE P503 David Notkin ● Spring 2009 60

4/16/2009

16

UW CSE P503 David Notkin ● Spring 2009 61

