
4/30/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight’s agenda

• Brief discussion: Alloy

• Software design: aspect-oriented design and

programming

• Discussion: NATO and SWEBOK…

• Assignment 3 research papers – more information

• One-minute paper

UW CSE P503 David Notkin ● Spring 2009 2

Discussion: Alloy

• [Some folks are not done, so this is not about the

assignment per se]

• Reactions to Alloy as an approach and as a tool?

• Potentially useful to you in some situations?

– If so, which ones?

– If not, why not?

• Other?

UW CSE P503 David Notkin ● Spring 2009 3

Aspect-oriented design & programming

• Very broadly, an

approach in which

crosscutting concerns are

separated (modularized)

from the core design and

program

• The intent is to allow

those crosscutting

concerns to be defined

and changed as

independently as

possible from the core

design and program

UW CSE P503 David Notkin ● Spring 2009 4

Concern1 Concern2

Concern3 Concern4

P

Concern1 Concern2

Concern3 Concern4

P’

Concern1A Concern2

Concern3

P’

4/30/2009

2

Crosscutting concerns

• Software concerns that pervade a program but are

largely orthogonal to the program’s core domain

• Each crosscutting concern must itself have some

consistency and integrity, but with the code dispersed

throughout a program maintaining and changing a

concern can be difficult and error-prone

• Examples of crosscutting concerns might include

– Logging, user interface preferences,

authentication/authorization, …

UW CSE P503 David Notkin ● Spring 2009 5

Brief historical perspective

• Weaknesses in some information hiding

assumptions: open implementation

– Last week: base- vs. meta-interface

– client control over some aspects of

implementation through meta-interface

– separate “red vs. blue” code to some degree

• Weaknesses in some uses of object-oriented

inheritance: subject-oriented programming

UW CSE P503 David Notkin ● Spring 2009 6

Subject-oriented programming

• Harrison, Ossher, et al. @ IBM Research

• Different clients have different views of the entities in

a system

• Example: a “tree” may be viewed by a botanist, an

ecologist, a logger, a squirrel, etc.

• Therefore, need to represent entities in different ways

to different users

• Motivation for “overthrowing the dominant

decomposition”

• Conventional OO programming fails to allow this

easily: issues in identity, support for change, etc.

UW CSE P503 David Notkin ● Spring 2009 7

To the first order…

• …and only the first order

• SOP preceded AOP

• AOP was articulated better and proselytized better

• The distinctions are real, but arguably not substantial

• They are, roughly, now considered one and the same

under the aegis of AOP

UW CSE P503 David Notkin ● Spring 2009 8

4/30/2009

3

Main implementations (for Java)

• AspectJ (http://www.eclipse.org/aspectj/)

• Hyper/J (http://www.alphaworks.ibm.com/tech/hyperj)

– Perhaps out of date

• Wikipedia lists perhaps 100 different aspect-oriented

implementations for a couple of dozen languages

(e.g., C/C++, PHP, Python, Ruby, …)

• 10+ books in 3+ (natural) languages

UW CSE P503 David Notkin ● Spring 2009 9

http://video.google.com/videoplay?docid=85669233113

15412414&q=engEDU

• Can stop video for questions/discussions

UW CSE P503 David Notkin ● Spring 2009 10

AOP: discussion

UW CSE P503 David Notkin ● Spring 2009 11

NATO: what’s different now?

UW CSE P503 David Notkin ● Spring 2009 12

http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.alphaworks.ibm.com/tech/hyperj
http://www.alphaworks.ibm.com/tech/hyperj
http://video.google.com/videoplay?docid=8566923311315412414&q=engEDU
http://video.google.com/videoplay?docid=8566923311315412414&q=engEDU

4/30/2009

4

SWEBOK: promising?

UW CSE P503 David Notkin ● Spring 2009 13

Assignment 3 – research papers

• A secondary research report

• Require the definition of a topic, and approval by me,

identification of pertinent papers and materials

(perhaps with help from me), perhaps some hands-

on experience for some kinds of topics, and finally a

scholarly report on the topic and your analysis of it,

complete with citations, open questions, etc.

• The list of potential topics is enormous, but perhaps a

few examples might help: state-of-the-research in ...

symbolic execution, random testing, code searching,

reliability models, software inspections, program

slicing, automatic theorem proving, clone analysis,

…..
UW CSE P503 David Notkin ● Spring 2009 14

Sample: one style

• On the whole, the following papers from an ICSE

2000 "future of software engineering" track are in

roughly the style I'd like -- http://www.informatik.uni-

trier.de/~ley/db/conf/icse/future2000.html is the whole

list (in the ACM Digital Library)

• Some are much better than others, and the part that

looks to the future could/should be reduced with an

added focus on current status. But still, the feel is

reasonable.

• As for length, roughly the same as these (10

conference pages) is fine, but I'm flexible within

reason..

UW CSE P503 David Notkin ● Spring 2009 15

One-minute paper

• Key point? Open question? Mid-course correction?

UW CSE P503 David Notkin ● Spring 2009 16

http://www.informatik.uni-trier.de/~ley/db/conf/icse/future2000.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/future2000.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/future2000.html

4/30/2009

5

UW CSE P503 David Notkin ● Spring 2009 17

