
4/2/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Weeks 1-3: formal specifications

UW CSE P503 David Notkin ● Spring 2009 2

Start with Hoare logic

and work to linear

logic and modal logic

Weeks 4-7: using neural nets

UW CSE P503 David Notkin ● Spring 2009 3

Understand basics of neural nets, practice with various approaches to

weighting them, apply to software engineering problems

Weeks 8-10: software reliability

UW CSE P503 David Notkin ● Spring 2009 4

Er (T)
E0

I0
Ec (T)

R(t,T) e
C
E0
I0

Ec (T) t

0

)(dttRMTTF

)ˆexp(1(

ˆ 1

n

n

i

i

tb

f

N

n

i ii

iiiii

n

n

i

inn

bttb

tbttbtf

tb

ftbt

1 1

111

)exp()ˆexp(

)ˆexp()ˆexp((

)ˆexp(1(

)ˆexp(

Time between failures

Error models, fault/failure models, non-

homogeneous distributions, etc.

4/2/2009

2

April Fool! GOTCHA!

• Oh, that was yesterday?

• No problem, just an off-by-one error!

UW CSE P503 David Notkin ● Spring 2009 5

Material on the previous slides taken

without attribution but with apologies to

many sites and people

UW CSE P503 David Notkin ● Spring 2009 6

Facts

• Collectively and individually, you have designed,

developed, tested, shipped and maintained orders of

magnitude more software than I have

• Collectively and individually, you continue to make

design decisions, write code, test code, fix bugs, etc.

on a daily basis; I don’t

• Few of you are aware of much ongoing research in

software engineering; I am

• Few of you are able to separate quickly the good

from the bad in software engineering research; I am

good (although imperfect) at this

Course goals

• To expose you to key approaches in software
engineering research, with the hope that one or more
of them can help you in your daily work – perhaps
immediately, perhaps in the longer term

• Without ignoring your day-to-day issues, try to look
deeper into the issues of engineering quality software
than day-to-day pressures usually allow

• To let you delve into some specific research areas
that interest you

• To increase your ability to communicate with software
engineering researchers and other software
engineers

UW CSE P503 David Notkin ● Spring 2009 7

Your problems?

• What problems – technical or non-technical – do you

find the most serious in designing, developing,

maintaining, and shipping software and/or products

that have significant software components?

UW CSE P503 David Notkin ● Spring 2009 8

4/2/2009

3

Some from former PMP students

• Lack of open communication

• Inability to prepare for and

adjust to unexpected changes

• Nailing down interfaces

• Software development does not

get much recognition as an art

• Quality is always what loses in

the battle between development

and management

• Methods for mitigating bugs

early in the software process

are not well known or accepted

• Servicing software and

maintaining backwards

compatibility

• Lack of scheduled design time

• Lack of proper specifications

• Lack of proper documentation

for old code

• Lack of processes that allow for

writing, building and testing the

code and then releasing it such

that customers are not

adversely affected

• Designing software so that it is

very easy to test

• Loss of knowledge when people

move on

UW CSE P503 David Notkin ● Spring 2009 9

Your academic background?

• Undergraduate degree in computer science or

computer engineering?

• Undergraduate degree in something else?

• Undergraduate course in software engineering?

• Other academic programs or degrees?

UW CSE P503 David Notkin ● Spring 2009 10

Software engineering course?

• If you took an undergraduate software engineering

course, what was the structure?

– Small teams, large teams?

– Assigned project, self-defined project, no project?

– Full lifecycle, early lifecycle, late lifecycle?

• What did you like or not like?

• Was any material relevant to your (first) job? If so,

what was it?

UW CSE P503 David Notkin ● Spring 2009 11

Your organization?

UW CSE P503 David Notkin ● Spring 2009 12

Size?

Customers?

Domain?
And anything else material

4/2/2009

4

Topics you’d like to see? Not see?

Some of those mentioned by former PMP students

• Measuring “quality” objectively

• Important results from research (especially quantitatively

evaluated)

• Deep underlying theory that’s normally underappreciated or

ignored by practitioners

• Project management, managing project scope

• SOA

• UML

• …

UW CSE P503 David Notkin ● Spring 2009 13

Quantitatively evaluated results

• Thought experiment:

– Without having to demonstrate that a result is

accurate, state an imaginable “quantitative result”

that would drive your daily work more effectively

UW CSE P503 David Notkin ● Spring 2009 14

Scrum development is…

• … better than Extreme Programming.

• … better than Extreme Programming in 23% of projects .

• … results in 41% fewer bugs than does Extreme Programming.

• … better than Extreme Programming in 59% of projects that

have at most 30 software developers.

• … better than Extreme Programming in 61% of projects that

have largely inexperienced software developers.

• … better than Extreme Programming in 52% of projects in which

at least 15% of the software developers have come from

Engineering schools.

• OK, you try.

UW CSE P503 David Notkin ● Spring 2009 15

Enough about you…

• Brown (1977), Carnegie Mellon (1984)

• UW since 1984, department chair 2001-06

• Advised/co-advised 19 PhD students

• Sabbaticals in Japan (1990-91), Israel/Japan (1997-98),

Sweden (2006-07)

• Program chair 1st ACM SIGSOFT Symposium on the

Foundations of Software Engineering (1993)

• Program co-chair 17th International Conference on Software

Engineering (1995)

• ACM SIGSOFT chair (1997-2001)

• ACM Transactions on Software Engineering and Methodology

editor-in-chief (2007-)

• CRA (Computing Research Association) board (2005-)

• …
UW CSE P503 David Notkin ● Spring 2009 16

4/2/2009

5

Questions, comments, anecdotes…

• I won’t learn much if you keep quiet during lecture and

electronically outside of class

– And yes, it’s all about me!

• You won’t learn as much either

– Research shows that in lecture people have a relatively short

attention span; maybe 15-20 minutes near the beginning of a

lecture, dropping to just a few minutes later on

– The attention span “clock” can be reset by questions and

other non-”yadda yadda” interludes

• Help me continue to learn about “the customer” – all of you! – so

that we all take full advantage of your experience

UW CSE P503 David Notkin ● Spring 2009 17

Perspectives and biases #1

• Barry Boehm distinguishes

between building the

system right and building

the right system

• Michael Jackson

distinguishes between

requirements in the world

and programs that define

the machine

• Manny Lehman and Les

Belady identify the

feedback loop between the

users and a program

People

Software

UW CSE P503 David Notkin ● Spring 2009 18

Michael Jackson

Books, Authors,

Titles, etc.

Records,

databases,

pointers, etc.

The World The Machine

UW CSE P503 19

• Requirements in the

application domain

• Program (machine) has

an effect in the

application domain

• The mapping is

inherently imperfect

• Things in the world that are not

represented in the machine: e.g., book

sequels, pseudonyms, anonymous books

• Things in the machine that don’t represent

anything in the world: e.g., null pointers,

deleting a record, back pointers

Serious confusions abound

when distinctions like these

are forgotten or ignored

David Notkin ● Spring 2009

Perspectives and biases #2

• “Software crisis” coined

in 1968 at 1st NATO

Software Engineering

Conference

• Software projects are

too expensive, too

buggy, too late,

cancelled too often, …

• Cyber-physical projects

are too late, fail too

often, etc. due to

software

• Therac-25

• Mars Polar Lander

• Mars Climate Orbiter

• Ariane

• Denver Airport

• Vancouver Stock

Market

• Concon

• …

UW CSE P503 David Notkin ● Spring 2009 20

Quite simply, software and

software engineering suck

4/2/2009

6

Resolved: software [engineering] sucks

Pro: all of you

• Prepare points in small

groups [~5 minutes]

Con: me

UW CSE P503 David Notkin ● Spring 2009 21

“pro” nor “con”

• We need to assess and consider value

• We need to work towards defining realistic bounds on

absolute costs, relative costs and intrinsic costs

• We need to consider all dimensions of engineering,

including the physical components and the users

themselves

UW CSE P503 David Notkin ● Spring 2009 22

Making software the “fall guy” will not help us solve

the important and hard problems we face

If software is really a “crisis”, give us another one!

Perspectives and biases #3

• Engineering (including software) is design under

constraints

• You are intimately, although at times implicitly, aware

of your constraints: customer needs, shipping

deadlines, resource limitations (memory, power,

money, etc.), compatibility, reward structure,

organizational culture, and much more…

• I do not know your constraints, which makes it at

least hard to know which approaches and techniques

can be effectively applied in your context

UW CSE P503 David Notkin ● Spring 2009 23

A consequence of varied constraints

• There is no single right

way to engineer software:

no best programming

language, design method,

software process, testing

approach, team structure,

etc.

• This does not imply that

every approach is good

under some constraints

• Nor does it suggest that

there are no consistent

themes across effective

approaches

• “I have the uncomfortable

feeling that others are making a

religion out of [removing gotos],

as if the conceptual problems of

programming could be solved

by a single trick, by a simple

form of coding discipline!” [E.

Dijkstra]

• “Don’t get your method advice

from a method enthusiast. The

best advice comes from people

who care more about your

problem than about their

solution.” [M. Jackson]

UW CSE P503 David Notkin ● Spring 2009 24

4/2/2009

7

Perspectives and biases #4

• Is software engineering really engineering? Can it

be? Should it be? Will it be?

– Maturity and relevance of the field?

– Continuing change?

– Dominant discipline?

– Kind of design?

– Physical constraints?

– Moore’s Law for software?

UW CSE P503 David Notkin ● Spring 2009 25

Maturity and relevance

• For better or for worse, the software industry became

relevant incredibly quickly (on an historical basis)

• The mashup of development, research, startups, and

more appears to be different from other “engineering”

fields (on an historical basis)

• Open question: to what degree, if any, are the

problems faced by the software field a matter of its

immaturity? If this is indeed an issue, are there ways

to cause us to mature more quickly?

UW CSE P503 David Notkin ● Spring 2009 26

UW CSE P503 David Notkin ● Spring 2009 27

“All useful programs undergo continuing

change”: Belady and Lehman

• A significant amount of “software maintenance” addresses

changes for which roughly analogous changes would be

considered non-routine in most other fields

• Augmenting a radio to include

a television

• Adding floors to skyscrapers,

lanes to bridges

• Accommodating new aircraft

at airports

• Adding Cyrillic-based

languages to European Union

documents

• Adding support to a browser

for an entirely type of

interaction (e.g., digital pens)

• Scaling software systems by

an order of magnitude (pick

your dimension)

• Supporting the web in a

desktop productivity suite

• Adding support for Asian

languages to a tool

UW CSE P503 David Notkin ● Spring 2009 28

Dominant discipline: Stu Feldman

103 Lines of Code Mathematics

104 LOC
Science

105 LOC
Engineering

106 LOC Social Science

107 LOC Politics

108 LOC, 109 LOC, … ???, ???, …

4/2/2009

8

Kinds of design

• Routine vs. innovative design

– Designing a C compiler for a new DSP chip

– Designing the first WYSIWYG editor

• Standardized vs. non-standardized design

– Automobile design is standardized: the designers know

virtually everything about the context in which the automobile

will be used (expected passenger weights, what kind of

roads will be encountered, etc.)

– Bridge design is non-standardized: the designers must

understand the specific location in which the bridge will be

built (the length of the span, the kind of soil, the expected

traffic, etc.)

• These lead to fundamentally different design spaces – where

does software fit?

UW CSE P503 David Notkin ● Spring 2009 29

Software and physical laws

• Physical systems are

constrained by largely well-

known and well-understood

laws of physics

• Many of these laws rely on

notions of continuity, where

small changes in an input

generally lead to a small change

in the output

• Continuous mathematics is a

powerful model for these

systems

• Software instead works in a

discrete world, where small

changes in an input often lead

to discontinuous changes in the

output

– Discrete math must face

enormous state spaces

• Failure modes differ – failure of

physical components vs. design

flaws

• “Software is like entropy. It is

difficult to grasp, weighs

nothing, and obeys the second

law of thermodynamics; i.e., it

always increases.” [Norman

Augustine]

UW CSE P503 David Notkin ● Spring 2009 30

Moore’s Law?

“… exponentially improved

hardware does not necessarily

imply exponentially improved

software performance to go

with it. The productivity of

software developers most

assuredly does not increase

exponentially with the

improvement in hardware, but

by most measures has

increased only slowly and

fitfully over the decades.”

[Wikipedia,“Software: breaking

the law”]

• The performance of software

and of software developers is

compared to transistors on an

integrated circuit

• What human activity has

matched the growth of

Moore’s Law? The

productivity of hardware

designers?

• What other technology has

matched the growth of

Moore’s Law? Batteries?

Displays?

31UW CSE P503 David Notkin ● Spring 2009

Is it really engineering?

• Overall, I believe that software is – at least at present

– sufficiently different from physical materials that

software engineering should be considered to be

largely distinct from classic engineering disciplines

• Many of the approaches that try to make software

engineering more like engineering seem to do so by

trying to beat the “soft” out of “software” – but isn’t

that precisely its potential and its power?

UW CSE P503 David Notkin ● Spring 2009 32

4/2/2009

9

Perspectives and biases #5

• Cyber-physical systems are even harder to think

about

• Co-design often pushes hard stuff into software (after

all, it’s “just” software) – which naturally makes the

software more complicated: and complex stuff is

more likely to have flaws because it’s complex

• Co-design freezes non-software parts early, so

software must fix any problems in those parts (after

all, software is “soft”)

• Software comes last, so it’s often blamed

UW CSE P503 David Notkin ● Spring 2009 33

Two cyber-physical examples

Therac-25

Death from lethal radiation doses

• Code wasn’t independently reviewed

• Software wasn’t considered during

reliability modeling

• A physical interlock was removed: it

had masked defects in earlier models

• The software could not verify that

sensors were working correctly

• Experienced operators could enable a

race condition – but testing was done

with inexperienced operators

• Overflow weakened error checking

Mars Polar Lander

$120M crash

• “…the most likely cause of the failure

of the mission was a software error

that mistakenly identified the vibration

caused by the deployment of the

lander's legs as being caused by the

vehicle touching down on the Martian

surface, resulting in the vehicle's

descent engines being cut off while it

was still 40 meters above the surface,

rather than on touchdown as planned.”

[Wikipedia]

UW CSE P503 David Notkin ● Spring 2009 34

Just because different software would make a difference

doesn’t necessarily mean it was a software problem per se

UW CSE P503 David Notkin ● Spring 2009 35

Again…

• Knee-jerk reactions to software are bad for everybody – we

need more accuracy, more honesty

• As software professionals, we need to be articulate about what

we do well and what we do poorly and what we know and what

we don’t know

• The root cause is not always the same as the direct cause

Perspectives and biases #6

• Crucial judgments about software are made by

humans informed by technical assessments – this will

not change

• The technical assessments may be wrong

• The technical assessments may be insufficient

• The assumptions underlying the technical

assessments may be wrong

• The assumptions the humans make about the

technical assessments may be wrong

• The judgments of the humans may be wrong

UW CSE P503 David Notkin ● Spring 2009 36

4/2/2009

10

Perspectives and biases #7

• It’s a matter of human confidence

– evidence

– assumptions

– argument

UW CSE P503 David Notkin ● Spring 2009 37

Capturing confidence

• Matt Dwyer and colleagues put this notion of confidence in

terms of “sources of unsoundness”

– We need to know the degree of unsoundness

– That is, we need to know what we know, and what we don’t

know

• Bev Littlewood and colleagues use Bayesian Belief Networks to

assess confidence levels

– "How much will confidence about a system's safety increase

if I add a verification argument to a statistical testing

argument?”

– Plausible BBN-based answers include

• reducing doubt by1/3 and

• supportive verification lessening confidence from testing

alone

UW CSE P503 David Notkin ● Spring 2009 38

Dwyer: Coverage

• Nobody (rational) believes that one technique will “do

it all”: a suite of techniques will be required

• How do we know that these techniques

– cover the breadth of software requirements?

– cover the totality of program behavior?

• That is, how do we know that

– every desired property (correctness, performance,

reliability, security, …) is achieved in

– every possible execution?

UW CSE P503 David Notkin ● Spring 2009 39

Behaviors

Sample across executions

UW CSE P503 David Notkin ● Spring 2009 40

4/2/2009

11

Behaviors

Deadlock

Freedom from races

Data structure invariants

Sample across requirements

UW CSE P503 David Notkin ● Spring 2009 41

Possible topics: TBD

UW CSE P503 David Notkin ● Spring 2009 42

UW CSE P503 David Notkin ● Spring 2009 43

Requirements and specifications

• More software systems fail because they don’t meet the needs

of their users than because they aren’t implemented properly

• A brief history in proving programs correct

– An expected panacea for software that didn’t pan out

– But has provided some benefits

• A look at formal specifications, with a focus on two forms

– Model-based specifications (Z) – we’ll come back to

automatic analysis of specifications like these later on

– Overview of state machine based specifications – including

automatic analysis using model checking

• A brief overview of requirements engineering issues

UW CSE P503 David Notkin ● Spring 2009 44

Design

• Basic issues in design, including some historical

background

– Well-understood techniques such as information

hiding, layering, event-based techniques

• More recent issues in design

– Aspect oriented approaches

– Architecture, patterns, frameworks

4/2/2009

12

UW CSE P503 David Notkin ● Spring 2009 45

Evolution

• The objective is to use an existing code base as an

asset

• Basic background

• Approaches to change

– Reverse engineering

– Visualization

– Software summarization

• Change as a first-class notion

• Augmenting Dwyer’s view with change

• Longitudinal analysis

UW CSE P503 David Notkin ● Spring 2009 46

Analysis and tools

• Tools and analysis

• The analysis part might be close to the specification

topics covered earlier in the quarter, but the focus will

be much, much closer to the source code

• Static vs. dynamic analysis

• Underlying representations

• Example tools

UW CSE P503 David Notkin ● Spring 2009 47

Quality assurance/testing

• What do we know, and when do we know it?

• Building confidence over time

UW CSE P503 David Notkin ● Spring 2009 48

Mining software repositories

• “Research is now proceeding to uncover the ways in which

mining [software] repositoriescan help to understand software

development, to support predictions about software

development, and to plan various aspects of software projects.”

[MSR 2007 web page]

– Broadly defined to include code, defect databases, version

control information, programmer communications, etc.

• Underlying premise: we believe there is something – actually, a

lot of things – that can be learned from studying these

repositories

• But it presents a paradox – if we think most software is low

quality, how can we learn by studying the repositories?

4/2/2009

13

UW CSE P503 David Notkin ● Spring 2009 49

Final examination

• By University rule, an instructor is allowed to

dispense with a final examination at the scheduled

time (6:30-8:20PM, June 11, 2009) with unanimous

consent of the class

• If you prefer to have a final examination
for the entire class, you must let me know
by the 6:00PM before the second lecture
(April 9, 2009)

Four assignments

1. Essay

2. A secondary research report on an approved topic based on

significant reading of various pertinent papers and materials

– These scholarly reports provide information about the topic

and your analysis of it, complete with citations, open

questions, etc.

3. Non-tool based assignment

4. Tool-based assignment (probably in Daniel Jackson’s alloy

system)

• Unless there’s a final, these are 25% each

• The research report and the tool-based assignments may be

done in groups up to three people

UW CSE P503 David Notkin ● Spring 2009 50

First assignment: essay

• Due two weeks (minus a couple of hours) from now

• A 5-10 page articulate, well-reasoned essay, with

appropriate citations about one of three topics

• Post your essays on the wiki

– 1/5 of your grade for the assignment will be based

on timely comments on essays by the other

students

UW CSE P503 David Notkin ● Spring 2009 51

Topic A

• Consider the 1968 and 1969 NATO Software

Engineering Conferences. Characterize issues that

(a) have been solved, (b) are no longer material, and

(c) are still pertinent but remain unsolved. Also

identify current technologies, methodologies, etc. (if

any) that are argued to address the pertinent-but-not-

yet-solved issues.

UW CSE P503 David Notkin ● Spring 2009 52

4/2/2009

14

Topic B

• Consider three or four "software disasters" not

discussed in class. Describe each of them with some

care and provide a thoughtful analysis of the core

causes of each disaster. Pick disasters for which

there is a non-trivial analysis. Conclude the essay

with an assessment of the way these disasters are

generally presented in comparison to your own

analysis.

UW CSE P503 David Notkin ● Spring 2009 53

Topic C

• Consider the SWEBOK Guide, Chapter 1,

"Introduction to the Guide" (found in several formats

at the site) and "An Assessment of Software

Engineering Body of Knowledge Efforts", A Report to

the ACM Council (May 2000, by Notkin, Gorlick and

Shaw).

• Thoughtfully argue that the SWE Body of Knowledge

guide is or is not an appropriate basis for the

licensing of software engineers.

UW CSE P503 David Notkin ● Spring 2009 54

UW CSE P503 David Notkin ● Spring 2009 55

Remember

• Stay tuned to the web page and the wiki

• I will try to be in my office (CSE542, 206-685-3798)

for the hour or so before each class

– I am happy to take email and phone calls and to

make appointments

Before you leave: one-minute paper

• Most important point made in class tonight?

• Unanswered questions you still have?

• Any recommended mid-course corrections?

UW CSE P503 David Notkin ● Spring 2009 56

4/2/2009

15

UW CSE P503 David Notkin ● Spring 2009 57

