5/7/2009

— —_—

pLDI 2005 - Be's S|il|93! @ /;ost-Deployment Monitoring

Scalable Statistical
Bug Isolation

Ben Liblit, Mayur Naik, Alice Zheng,
Alex Aiken, and Michael Jordan

University of Wisconsin, Stanford
University, and UC Berkeley

/ Goal: Measure Reality rI/V;h‘at Should We Measure?

» Where is the black box for software? « Function return values err = fetch(file, &obj);
— Crash reporting systems are a start « Control flow decisions if (lerr && count < size)
« Minima & maxima list[count++] = obj;

« Actual runs are a vast resource

— Number of real runs >> number of testing runs ’ Va_lue relat!onshlps else
— Real-world executions are most important * 'Pointer-regions unref(obj);
+ Reference counts
« This talk: post-deployment bug hunting - Temporal In other words,
— Mining feedback data for causes of failure relationships lots of thi ngs

5/7/2009

rf/AC;Jr Model of Behavior f_//Bug Isolation Architecture “
Any interesting behavior is expressible .
. P ippin
as a predicate P on program state at a @ ! Applioation N
particular program point. ¢ " ww
Count how often “‘P observed true” and ¥
“P observed ” using sparse but fair
random samples of complete behavior.

f_/“Find Causes of Bugs rI/Ijo;k For Statistical Trends

« Gather information about many predicates How likely is failure when P happens?

— 298,482 predicates in bc

— 857,384 predicates in Rhy thmbox F(P) = # of failures where P observed true
S(P) = # of successes where P observed true

» Most are not predictive of anything

« How do we find the useful bug predictors? Failure(P) = F(PI):(+P)S(P)

— Data is incomplete, noisy, irreproducible, ...

5/7/2009

f_/‘fGood Start, But Not Enough

if (f == NULL) { [Failure(f — NULL)=10]
x = 0;
*f;

}

[Failure(— 0)=1.0]

« Predicate x == 0 is an innocent bystander
— Program is already doomed

_/f Context .

—— —_—

What is the background chance of failure
regardless of P’s truth or falsehood?

F(P observed) = # of failures observing P
S(P observed) = # of successes observing P

F(P observed)
F(P observed) + S(P observed)

Context(P) =

e —_—

_Isolate the Predictive Value of P

Does P being true increase the chance of
failure over the background rate?

Increase(P) = Failure(P) — Context(P)

(a form of likelihood ratio testing)

rI/Inc:e;se() Isolates the Predictor

if (f == NULL) { [increase(f — wuLL)=10|
x =0; [Increase(— 0)=00]

}

5/7/2009

—— —_— — —_—

f_/‘/lsolating a Single Bug in bc // It Works!
yoid more_arrays () #1:indx > scale ...for programs with just one bug.
#2:indx > use math .
) #3:indx > opterr * Need to deal with multiple, unknown bugs
T A [| ¥4 dndx > next_func « Redundant predictors are a major problem
arrays[indx] = oldiary[gndx];#S: indx > 1_base
R R A Goal: Isolate the best predictor
arreyslindx] = NULL; for each bug, with no prior
- knowledge of the number of bugs.

r%‘fMultiple Bugs: Some lIssues rf‘/lguide to Visualization)

« A bug may have many redundant predictors + Multiple interesting & useful predicate metrics
— Only need one, provided it is a good one » Graphical representation helps reveal trends

« Bugs occur on vastly different scales Increase(P) error bound

— Predictors for common bugs may dominate, Context(P) S(P)
hiding predictors of less common problems

— /
Y

log(F(P) + S(P))

5/7/2009

- —_—

o

hermomeier | Conlext

S| F F+5 Prodicic

0065 "
[

&
ity
4

TR
2732 additional predictoes follo

+ High Increase() but very few failing runs!
» These are all sub-bug predictors

— Each covers one special case of a larger bug
» Redundancy is clearly a problem

V/E; Idea #1: Rank by Increase(P)

—— —_—

_/fBad Idea #2: Rank by F(P)

Thermometer F F+5 Prodicaic

59 filealf

e
752 additional predictors folk . L T,

» Many failing runs but low Increase()!

+ Tend to be super-bug predictors
— Each covers several bugs, plus lots of junk

/ A Helpful Analogy

« In the language of information retrieval
— Increase(P) has high precision, low recall
— F(P) has high recall, low precision

« Standard solution:
— Take the harmonic mean of both
— Rewards high scores in both dimensions

rf_/AR;nk by Harmonic Mean

Increase S | F F+5 Predicaie

— o116

It works!
— Large increase, many failures, few or no successes

» But redundancy is still a problem

5/7/2009

—— —_—

f_/‘f Redundancy Elimination

« One predictor for a bug is interesting
— Additional predictors are a distraction
— Want to explain each failure once

« Similar to minimum set-cover problem
— Cover all failed runs with subset of predicates
— Greedy selection using harmonic ranking

—— -_—

/STmulated Iterative Bug Fixing

1. Rank all predicates under consideration
2. Select the top-ranked predicate P

3. Add P to bug predictor list

4. Discard P and all runs where P was true

+ Simulates fixing the bug predicted by P
Reduces rank of similar predicates

5. Repeat until out of failures or predicates

e _—

Rank all predicates under consideration
Select the top-ranked predicate P

Add P to bug predictor list

Discard P and all runs where P was true

» Simulates fixing the bug predicted by P
* Reduces rank of similar predicates

5. Repeat until out of failures or predicates

M w N e

r/‘Sfimulated lterative Bug Fixing

Initial Effective Predicate

I I i<0

I | BN | naxlen > 1900

] L1 o + 8 > buf_size is TRUE

« 3 bug predictors from 156,476 initial predicates
« Each predicate identifies a distinct crashing bug
« All bugs found quickly using analysis results

(/E;r;rimental Results: exif

5/7/2009

f_/lg:p)erimental Results: Rhythmbox // Lessons Learned
- « Can learn a lot from actual executions
— = — Users are running buggy code anyway
= = — We should capture some of that information
= * Crash reporting is a good start, but...
_—— = — Pre-crash behavior can be important
« 15 bug predictors from 857,384 initial predicates — Successful runs reveal correct behavior
« Found and fixed several crashing bugs — Stack alone is not enough for 50% of bugs
K‘FTublic Deployment in Progress Join the Cause!
10% — 9 q o
% The Cooperative Bug Isolation Project
6% 1 O 5 g A
- H B http://www.cs.wisc.edu/cbi/
2% 1
0% - T T
S FE oS
@\o\‘) o &\@0\ 0&@ é&’ Q@«\@ K

5/7/2009

—— —_—

/U;g program changes)

"Borrowed" with only minor reduction - thank you, Amitabh and Jay!]

. e - . + Source code differencing
EffecthEly P“O”tlzmg Testsin — S. Elbaum, A. Malishevsky & G. Rothermel “Test case

Deve|opment Environment prioritization: A family of empirical studies”, Feb. 2002
— S. Elbaum, A. Malishevsky & G. Rothermel

“Prioritizing test cases for regression testing” Aug.
2000

002 LA
lssTA 2 Amitabh Srivastava — F. Vokolos & P. Frankl, “Pythia: a regression test

Jay Thiagarajan selection tool based on text differencing”, May 1997

PPRC, Microsoft Research

f/U‘s;g program changes i (ﬂ;of various techniques)

+ Data and control flow analysis + Source code differencing

« Simple and fast

« Can be built using commonly available tools like “diff”
« Simple renaming of variable will trip off

— T. Ball, “On the limit of control flow analysis for
regression test selection” Mar. 1998

— G. Rothermel and M.J. Harrold, “A Safe, Efficient « Will fail when macro definition changes
Regression Test Selection Technique” Apr. 1997 « To avoid these pitfalls, static analysis is needed
« Code entities « Data and control flow analysis
— Y. F. Chen, D.S. Rosenblum ?nd K.P: Vo “TestTube: A . ;%vzl?ggilgsls is difficult in languages like C/C++ with pointers, casts
System for Selective Regression Testing” May 1994 « Interprocedural data flow techniques are extremely expensive and

difficult to implement in complex environment

5/7/2009

e —_— e —_—

r/OAUTSOIUtiO” Test Effectiveness Infrastructure R
EE [E KD

* Focus on Change from previous version \
« Determine change at very fine granularity — basic
block/instruction

Id Buil New Buil
* Operates on binary code \
« Easier to integrate in production environment ECHELON

Binary Diff
« Scales well to compute results in minutes @]
« Simple heuristic algorithm to predict which

Coverage Impact

part of code is impacted by the change Analysis

f/E‘c;elon : Test Prioritization) (/BE;(Change Analysis: Binary)

- - Matching

Old Build New Build

[0 Buid] [rven uid]
Block Change Analysis o
* / AN

Magellan | Coverage Impact Analysw’sl \

ot
Repository l .\ (()clgailgési / \
| <5 Pad

(*link with symbol server for symbols) \ /
\ .

BMAT - Binary Matching [Wang, Pierce and McFarling JILP 2000]

Test Prioritization |

Leverage what has 1
already been tested

5/7/2009

- —_——

f_/(;ofverage Impact Analysis
» Terminology

: collection of one or more test cases
: old modified and new blocks

» Compute the coverage of traces for the new
build

« Coverage for old (unchanged and modified) blocks are
same as the coverage for the old build

« Coverage for new nodes requires more analysis

%ofverage Impact Analysis

—— —_—

A Trace may cover a new
block N if it covers at least one

Predecessor block and at least
one Successor Block

\ \ / /lel étgeéprocedural

If P or S is a new block, then
its Predecessors or successors

are used (iterative process)

'R

e —_—

ﬂerage Impact Analysis
« Limitations - New node may not be executed

« If there is a path from successor to predecessor
« If there are changes in control path due to data changes

rIE/che;;: Test Case Prioritization

« Detects minimal sets of test cases that are likely to cover the
(old changed and new blocks)
« Input is traces (test cases) and a set of impacted blocks
 Uses a greedy iterative algorithm for test selection

Change Analysis
Coverage Impact Analysis|
Test Prioritization

10

5/7/2009

——

CITTTTT]
R ==

V/E‘c;elon: Test Selection

o000

Il Denotes that a trace T covers the impacted block

T1
T2

T3
T5

T4

——

Trace T1
Trace T2
Trace T3

/Ec;zlon: Test Selection Output)

Trace T4
Trace T5

Trace T7
Trace T8

||

Trace Tm

e

f/,‘:r;ysis of results

Three measurements of interest
— How many sequences of tests were formed ?
— How effective is the algorithm in practice ?
— How accurate is the algorithm in practice ?

(ﬂ; BinaryE

Version 1
Date 12/11/2000
Functions 31,020
Blocks 668,068
Arcs 1,097,294
File size 8,880,128
PDB size 22,602,752
Impacted Blocks 0
Number of Traces 3128
Source Lines ~1.8 Million

Version 2

01/29/2001
31,026

668,274

1,097,650

8,880,128
22,651,904

378 (220 N, 158 OC)

3128
~1.8 Million

Echelon takes ~210 seconds for this 8MB binary

11

5/7/2009

f/‘/ F——
'e
w
"
g u
g
¢
&
g .
2
* &
’
: = N N S —
.
0 - P P P - - -
Set
e

r/ Number of Impacted Blocks in each Set

#mpacted Blocks

o 20 a0 800 200 000 1200 1400

———# Imagacted Blocks

rl//‘mp:ae Block Coverage and Cumulative Total Coverage wrt Sets

s
s
o
£ ams
@
=
8 mus
mws
|
oo - e——
—
—
—
o = o @ an som m

« Important Measure of effectiveness is early
defect detection

» Measured % of defects vs. % of unique
defects in each sequence

« Unique defects are defects not detected by
the previous sequence

@;\;ness of Echelon

12

5/7/2009

Effectiveness of Echelon

Defects detected in each sequence

Effectiveness of Echelon

Defects detected in each sequence

100 = 100
g 80 g 8o
D [
E 60 E 60
8 40 g 40
T o}
3 20 §
0 0
1 2 3 4 1 2 3 4
Sequence Sequence
@ % Defects detected O % Unique Defects
/‘44 —— e —

Mispredict due to Limitations
4505

L0

250% +——rF

2005 +——o

2509

200%

imepacted Bocks Mispredcte:

150% i —

1.00% ol

050%

0.00%

set1 sal2 8013 sot4

Blocks predicted hit that were not hit

Misprediet dhie 10 comservative approach
sam

et

Blocks predicted not hit that were actually hit
(Blocks were target of indirect calls are being predicted as not hit)

13

5/7/2009

——

chelon Results: BinaryK
K ¢
/ T

Test Cases
=

1

305 7 8 1 1315 7 1 2 235 2
Sets

¢
g 10 S

103 5 7 9 1113 15 17 19

2 23 25 27

/E;:Ion Results: BinaryU a

—— —_—

Number of Test Cases per Set

I) B

RTAVARWYAN PRI

L —n
=1

\ [\ ® 5

135 7 915w ANBNNB
sets

f/S‘u;mary

« Binary based test prioritization approach

+ Simple heuristic with program change in

fine granularity works well in practice

« Currently integrated into Microsoft

Development process

can effectively prioritize tests in large scale
development environment

seis
Impacted Block Coverage and Cumulative Toal Coverage wr Sets
\mpacted Block coverage and Cumulative Coverage wrt Sets
45% e 6%
a0 ; 05/01/2001 | 05/23/2001
= s
o Da 0si01/2001 | ost2ar2001 - pE— oo o0
Functic 7 774 par
30 1761 177 - [mimosced | Blocks 30916 31,003
g 25% Blo: 32012 32135 o IS
£ 200 = e pepe N 46,638 46,775
8 :
15% o T TP UUT U fe 203 52089
10% File size 852,688 894464 o .
° N im 0 [270190 N, 80
50 . o] sm@son, TasTounsuBABSTRAR L o
0% Blo 2390C) Sets
13 5 7 9 1113 1517 19 21 23 25 27 56 56
Set a 56 56

flﬂ/;r;ge Impact Analysis

« Echelon provides a number of options
« Control branch prediction

« Indirect calls : if N is target of an indirect call a trace
needs to cover at least one of its successor block

* Future improvements include heuristic branch
prediction
—Branch Prediction for Free [Ball, Larus]

14

5/7/2009

— [r—

V/E‘c;elon: Test Selection)

* Options
+ Calculations of weights can be extended, e.g. traces with

great historical fault detection can be given additional
weights

« Include time each test takes into calculation

« Print changed (modified or new) source code that may not
be covered by any trace

« Print all source code lines that may not be covered by any
trace

15

