
5/7/2009

1

Scalable Statistical

Bug Isolation

Ben Liblit, Mayur Naik, Alice Zheng,
Alex Aiken, and Michael Jordan

University of Wisconsin, Stanford
University, and UC Berkeley

Post-Deployment Monitoring

Goal: Measure Reality

• Where is the black box for software?

– Crash reporting systems are a start

• Actual runs are a vast resource

– Number of real runs >> number of testing runs

– Real-world executions are most important

• This talk: post-deployment bug hunting

– Mining feedback data for causes of failure

What Should We Measure?

• Function return values

• Control flow decisions

• Minima & maxima

• Value relationships

• Pointer regions

• Reference counts

• Temporal

relationships

err = fetch(file, &obj);

if (!err && count < size)

list[count++] = obj;

else

unref(obj);

In other words,

lots of things

5/7/2009

2

Our Model of Behavior

Any interesting behavior is expressible

as a predicate P on program state at a

particular program point.

Count how often “P observed true” and

“P observed” using sparse but fair

random samples of complete behavior.

Bug Isolation Architecture

Program

Source

Compiler

Sampler

Predicates

Shipping

Application

Counts

& J/L




Statistical

Debugging

Top bugs with

likely causes

Find Causes of Bugs

• Gather information about many predicates

– 298,482 predicates in bc

– 857,384 predicates in Rhythmbox

• Most are not predictive of anything

• How do we find the useful bug predictors?

– Data is incomplete, noisy, irreproducible, …

Look For Statistical Trends

How likely is failure when P happens?

F(P)

F(P) + S(P)
Failure(P) =

F(P) = # of failures where P observed true

S(P) = # of successes where P observed true

5/7/2009

3

if (f == NULL) {

x = 0;

*f;

}

Good Start, But Not Enough

Failure(f == NULL) = 1.0

Failure(x == 0) = 1.0

• Predicate x == 0 is an innocent bystander

– Program is already doomed

Context

What is the background chance of failure

regardless of P’s truth or falsehood?

F(P observed)

F(P observed) + S(P observed)
Context(P) =

F(P observed) = # of failures observing P

S(P observed) = # of successes observing P

Isolate the Predictive Value of P

Does P being true increase the chance of

failure over the background rate?

Increase(P) = Failure(P) – Context(P)

(a form of likelihood ratio testing)

if (f == NULL) {

x = 0;

*f;

}

Increase() Isolates the Predictor

Increase(f == NULL) = 1.0

Increase(x == 0) = 0.0

5/7/2009

4

void more_arrays ()

{

…

/* Copy the old arrays. */

for (indx = 1; indx < old_count; indx++)

arrays[indx] = old_ary[indx];

/* Initialize the new elements. */

for (; indx < v_count; indx++)

arrays[indx] = NULL;

…

}

Isolating a Single Bug in bc

#1: indx > scale#1: indx > scale

#2: indx > use_math

#1: indx > scale

#2: indx > use_math

#3: indx > opterr

#4: indx > next_func

#5: indx > i_base

It Works!

…for programs with just one bug.

• Need to deal with multiple, unknown bugs

• Redundant predictors are a major problem

Goal: Isolate the best predictor
for each bug, with no prior

knowledge of the number of bugs.

Multiple Bugs: Some Issues

• A bug may have many redundant predictors

– Only need one, provided it is a good one

• Bugs occur on vastly different scales

– Predictors for common bugs may dominate,

hiding predictors of less common problems

Guide to Visualization

• Multiple interesting & useful predicate metrics

• Graphical representation helps reveal trends

Increase(P)

S(P)

error bound

log(F(P) + S(P))

Context(P)

5/7/2009

5

Bad Idea #1: Rank by Increase(P)

• High Increase() but very few failing runs!

• These are all sub-bug predictors

– Each covers one special case of a larger bug

• Redundancy is clearly a problem

Bad Idea #2: Rank by F(P)

• Many failing runs but low Increase()!

• Tend to be super-bug predictors

– Each covers several bugs, plus lots of junk

A Helpful Analogy

• In the language of information retrieval

– Increase(P) has high precision, low recall

– F(P) has high recall, low precision

• Standard solution:

– Take the harmonic mean of both

– Rewards high scores in both dimensions

Rank by Harmonic Mean

• It works!

– Large increase, many failures, few or no successes

• But redundancy is still a problem

5/7/2009

6

Redundancy Elimination

• One predictor for a bug is interesting

– Additional predictors are a distraction

– Want to explain each failure once

• Similar to minimum set-cover problem

– Cover all failed runs with subset of predicates

– Greedy selection using harmonic ranking

Simulated Iterative Bug Fixing

1. Rank all predicates under consideration

2. Select the top-ranked predicate P

3. Add P to bug predictor list

4. Discard P and all runs where P was true

• Simulates fixing the bug predicted by P

• Reduces rank of similar predicates

5. Repeat until out of failures or predicates

Simulated Iterative Bug Fixing

1. Rank all predicates under consideration

2. Select the top-ranked predicate P

3. Add P to bug predictor list

4. Discard P and all runs where P was true

• Simulates fixing the bug predicted by P

• Reduces rank of similar predicates

5. Repeat until out of failures or predicates

Experimental Results: exif

• 3 bug predictors from 156,476 initial predicates

• Each predicate identifies a distinct crashing bug

• All bugs found quickly using analysis results

5/7/2009

7

Experimental Results: Rhythmbox

• 15 bug predictors from 857,384 initial predicates

• Found and fixed several crashing bugs

Lessons Learned

• Can learn a lot from actual executions

– Users are running buggy code anyway

– We should capture some of that information

• Crash reporting is a good start, but…

– Pre-crash behavior can be important

– Successful runs reveal correct behavior

– Stack alone is not enough for 50% of bugs

Public Deployment in Progress

0%

2%

4%

6%

8%

10%

E
vo

lu
tio

n

G
ai

m

T
he

G
IM

P

G
num

er
ic

N
au

til
us

R
hyt

hm
box

SPIM

success

failure

The Cooperative Bug Isolation Project

http://www.cs.wisc.edu/cbi/

Join the Cause!

5/7/2009

8

Effectively Prioritizing Tests in

Development Environment

Amitabh Srivastava

Jay Thiagarajan

PPRC, Microsoft Research

Using program changes

• Source code differencing

– S. Elbaum, A. Malishevsky & G. Rothermel “Test case

prioritization: A family of empirical studies”, Feb. 2002

– S. Elbaum, A. Malishevsky & G. Rothermel

“Prioritizing test cases for regression testing” Aug.

2000

– F. Vokolos & P. Frankl, “Pythia: a regression test

selection tool based on text differencing”, May 1997

Using program changes

• Data and control flow analysis

– T. Ball, “On the limit of control flow analysis for

regression test selection” Mar. 1998

– G. Rothermel and M.J. Harrold, “A Safe, Efficient

Regression Test Selection Technique” Apr. 1997

• Code entities

– Y. F. Chen, D.S. Rosenblum and K.P. Vo “TestTube: A

System for Selective Regression Testing” May 1994

Analysis of various techniques

• Source code differencing
• Simple and fast

• Can be built using commonly available tools like “diff”

• Simple renaming of variable will trip off

• Will fail when macro definition changes

• To avoid these pitfalls, static analysis is needed

• Data and control flow analysis
• Flow analysis is difficult in languages like C/C++ with pointers, casts

and aliasing

• Interprocedural data flow techniques are extremely expensive and
difficult to implement in complex environment

5/7/2009

9

Our Solution

• Focus on change from previous version

• Determine change at very fine granularity – basic

block/instruction

• Operates on binary code
• Easier to integrate in production environment

• Scales well to compute results in minutes

• Simple heuristic algorithm to predict which

part of code is impacted by the change

Test Effectiveness Infrastructure

…

Coverage Impact
Analysis

TEST

Old Build New Build

Binary Diff

Repository
Coverage

Magellan

Test Prioritization

ECHELON

BMAT/VULCAN

Coverage Tools

Echelon : Test Prioritization

Leverage what has
already been tested Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Block Change Analysis

Old Build

Binary Differences

Magellan
Repository

(*link with symbol server for symbols)

Block Change Analysis: Binary

Matching

Old Build New Build

New Blocks

Old Blocks
(not changed)

Old Blocks
(changed)

BMAT – Binary Matching [Wang, Pierce and McFarling JILP 2000]

5/7/2009

10

Coverage Impact Analysis

• Terminology

• Trace: collection of one or more test cases

• Impacted Blocks: old modified and new blocks

• Compute the coverage of traces for the new

build

• Coverage for old (unchanged and modified) blocks are

same as the coverage for the old build

• Coverage for new nodes requires more analysis

Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Change Analysis

Old Build

Binary Differences
Coverage Impact Analysis

Predecessor Blocks (P)

Successor Blocks (S)

New Block (N)

• A Trace may cover a new

block N if it covers at least one

Predecessor block and at least

one Successor Block

• If P or S is a new block, then
its Predecessors or successors
are used (iterative process)

Interprocedural
edge

Coverage Impact Analysis

• Limitations - New node may not be executed

• If there is a path from successor to predecessor

• If there are changes in control path due to data changes

Echelon : Test Case Prioritization

• Detects minimal sets of test cases that are likely to cover the

impacted blocks (old changed and new blocks)

• Input is traces (test cases) and a set of impacted blocks

• Uses a greedy iterative algorithm for test selection

Prioritized list of test cases

Test Prioritization

Coverage for new build

Coverage Impact Analysis

New Build

Change Analysis

Old Build

Binary Differences

5/7/2009

11

5

2

4

1

3

T1

T2

T3

T4

T5

Set 1
T1

T2

Set 2

T3

T5

Set 3

T4

4

1

3

0

1

1

Echelon: Test Selection

Impacted Block Map

Denotes that a trace T covers the impacted block

Weights

2

0

0

0

Echelon: Test Selection Output

Ordered List of Traces

Trace T1

Trace T2

Trace T3

Trace T4

Trace T5

Trace T7

Trace T8

SET1

SET2

SET3

Trace Tm SETn

Each set contains test
cases that will give
maximum coverage of
Impacted nodes

Gracefully handles the

“main” modification case

If all the test can be run,

tests should be run in this

order to maximize the

chances of detecting

failures early

.

.

.

.

.

.

Analysis of results

Three measurements of interest

– How many sequences of tests were formed ?

– How effective is the algorithm in practice ?

– How accurate is the algorithm in practice ?

Details of BinaryE

Version 1 Version 2

Date 12/11/2000 01/29/2001

Functions 31,020 31,026

Blocks 668,068 668,274

Arcs 1,097,294 1,097,650

File size 8,880,128 8,880,128

PDB size 22,602,752 22,651,904

Impacted Blocks 0 378 (220 N, 158 OC)

Number of Traces 3128 3128

Source Lines ~1.8 Million ~1.8 Million

Echelon takes ~210 seconds for this 8MB binary

5/7/2009

12

Effectiveness of Echelon

• Important Measure of effectiveness is early

defect detection

• Measured % of defects vs. % of unique

defects in each sequence

• Unique defects are defects not detected by

the previous sequence

5/7/2009

13

Effectiveness of Echelon

0

20

40

60

80

100

%
 D

e
fe

ct
s

d
e
te

ct
e
d

1 2 3 4

Sequence

Defects detected in each sequence

% Defects detected % Unique Defects

Effectiveness of Echelon

0

20

40

60

80

100

%
D

e
fe

ct
s

d
e
te

ct
e
d

1 2 3 4

Sequence

Defects detected in each sequence

% Defects % Unique defects

Blocks predicted hit that were not hit Blocks predicted not hit that were actually hit
(Blocks were target of indirect calls are being predicted as not hit)

5/7/2009

14

Echelon Results: BinaryK

Number of Test Cases per Set

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Sets

T
e
s
t

C
a
s
e
s

Number of Impacted Blocks in Each Set

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Sets

#
Im

p
a
c
te

d
 B

lo
c
k
s

Impacted Block coverage and Cumulative Coverage wrt Sets

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Set

C
o

ve
ra

g
e

Impacted

Cumulative

Build 2470 Build 2480

Date 05/01/2001 05/23/2001

Functions 1,761 1,774

Blocks 32,012 32,135

Arcs 47,131 47,323

File size 882,688 894,464

Impacted

Blocks

0 589 (350 N,

239 OC)

Traces 56 56

Echelon Results: BinaryU

Number of Test Cases per Set

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sets

T
e
s
t

C
a
s
e
s

Number of Impacted Blocks per Set

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sets

S
et

s

Impacted Block Coverage and Cumulative Total Coverage wrt Sets

0%

10%

20%

30%

40%

50%

60%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sets

C
o

v
e
ra

g
e

Impacted

Cumulative

Build 2470 Build 2480

Date 05/01/2001 05/23/2001

Functions 1,967 1,970

Blocks 30,916 31,003

Arcs 46,638 46,775

File size 528,384 528,896

Impacted

Blocks

0 270 (190 N, 80

OC)

Traces 56 56

Summary

• Binary based test prioritization approach

can effectively prioritize tests in large scale

development environment

• Simple heuristic with program change in

fine granularity works well in practice

• Currently integrated into Microsoft

Development process

Coverage Impact Analysis

• Echelon provides a number of options

• Control branch prediction

• Indirect calls : if N is target of an indirect call a trace

needs to cover at least one of its successor block

• Future improvements include heuristic branch

prediction

–Branch Prediction for Free [Ball, Larus]

5/7/2009

15

Echelon: Test Selection

• Options

• Calculations of weights can be extended, e.g. traces with

great historical fault detection can be given additional

weights

• Include time each test takes into calculation

• Print changed (modified or new) source code that may not

be covered by any trace

• Print all source code lines that may not be covered by any

trace

