
4/9/2009

1

CSE P503:

Principles of Software Engineering

David Notkin

Spring 2009

Tonight‟s agenda

• Model checking motivation, technical introduction,

checking specifications

• Interlude: discussion about “When Should a Process

Be Art” by Hall and Johnson (March 2009 Harvard

Business Review)

• SLAM/SDV

• May 21st – what to do?

• Bounded model checking: very brief intro to alloy

• One-minute paper (email to me by close of business

tomorrow): Key point? Open question? Mid-course

correction?
UW CSE P503 David Notkin ● Spring 2009 2

Model checking

UW CSE P503 David Notkin ● Spring 2009 3

Finite State

Machine

Temporal Logic

Formula

Satisfy?

YES

NO

• What are finite state machines? Temporal logic formulae?

What can they represent? What does “satisfy” mean? How does

“satisfy” work? Why should we care?

• Tonight: some low-level details, jumping to high-level

approaches – fill in the glue if you want on your own (I can help)

Counter

example

ACM 2007 Turing Award Citation

In 1981, Edmund M. Clarke and E. Allen Emerson, working in the USA,

and Joseph Sifakis working independently in France, authored seminal

papers that founded what has become the highly successful field of Model

Checking. This verification technology provides an algorithmic means of

determining whether an abstract model--representing, for example, a

hardware or software design--satisfies a formal specification expressed as

a temporal logic formula. Moreover, if the property does not hold, the

method identifies a counterexample execution that shows the source of the

problem. The progression of Model Checking to the point where it can be

successfully used for complex systems has required the development of

sophisticated means of coping with what is known as the state explosion

problem. Great strides have been made on this problem over the past 27

years by what is now a very large international research community. As a

result many major hardware and software companies are now using Model

Checking in practice. Examples of its use include the verification of VLSI

circuits, communication protocols, software device drivers, real-time

embedded systems, and security algorithms. …

UW CSE P503 David Notkin ● Spring 2009 4

Finite state machines (FSMs)

1. Finite non-empty alphabet

2. Finite non-empty set of states

3. A single start state

4. A state-transition mapping that takes a state and a

symbol and returns

– a new state (for deterministic FSMs) or

– a new set of states (for non-deterministic FSMs)

5. A possibly empty set of final states

UW CSE P503 David Notkin ● Spring 2009 5

M
a
th

e
m

a
ti
c
a
lly

:
a
 5

-t
u
p
le

Trivial example

UW CSE P503 David Notkin ● Spring 2009 6

S0 S1
0

1

0

S0

1

S1
0

1

0

What do they do?

(Both do the same thing)

What‟s the difference?

4/9/2009

2

UW CSE P503 David Notkin ● Spring 2009 7

A computation tree

• Represent all possible paths with a

computation tree – even when

infinite, structure is constrained

because of finite states

• Model checking answers questions

about this tree structure

• Kinds of queries

– Does every accepting input

include a 0? A 1?

– Does any accepting input

include a 0? A 1?

– Does every accepting input

that has a 1 have a 1 in the

remaining input?

– …

S0

S1

S0

…

S1

…

S0

S0

…

S1

…

• The computation tree is generated

from the state machine

• The temporal logic formula queries

the computation tree

Two Approaches to Model Checking

• Explicit – represent all states
– Use conventional state-space search

– Reduce state space by folding equivalent states
together

• Symbolic – represent sets of states using
boolean formulae
– Reduce huge state spaces by considering large

sets of states simultaneously

– Convert state machines, logic formulae, etc. to
boolean representations

– Perform state space exploration using boolean
operators to perform set operations

UW CSE P503 8David Notkin ● Spring 2009

Representing sets

• Symbolic model checking needs to represent large

sets of states concisely – for example, all even

numbers between 0 and 127

– Explicit representation
• 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,

40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 126

– Implicit (symbolic) representation
• ¬x0 (x0: least significant bit)

– The size of the explicit representation grows with the bound,
but not so for the implicit representation (in many cases)

• Need efficient boolean representation

UW CSE P503 David Notkin ● Spring 2009 9

Binary Decision Diagrams (BDDs)

• The original and most
common representation is
binary decision diagrams
(BDDs) [Bryant 86]

• These are directed acyclic
graphs evaluated as binary
decision trees

• For the trivial example,
these are trivial BDDs: x0

and ¬x0

• On the right is an example
of a BDD for odd (even)
parity of 4-bit numbers

UW CSE P503 10David Notkin ● Spring 2009

x0

x1

x2

x3

0

1

What would odd parity look like if…

• …the bits in the BDD were ordered in reverse?

x3x2x1x0

• …the bits were unordered? (Not a BDD)

UW CSE P503 David Notkin ● Spring 2009 11

x0

x2 x3

x1

Does the bit order affect the size?

• Not for parity…

• Group A: x0x1x2x3 – compute x1x0 + x3x2

• Group B: x0x1x2x3 – compute x2x0 + x3x1

• Group C: x0x1x2x3 – compute x1x0 * x3x2

• Group D: x0x1x2x3 – compute x2x0 * x3x1

UW CSE P503 David Notkin ● Spring 2009 12

4/9/2009

3

UW CSE P503 David Notkin ● Spring 2009 13

x0

x3

00

x1

x2

01 10 11 100 101 110

x3x1 00 01 10 11

x2x0

00 00 01 10 11

01 01 10 11 100

10 10 11 100 101

11 11 100 101 110

Efficiency

• BDD size is often small in practice

• Some large hardware circuits can be handled

• Some well-known limitations: e.g., exponential size

for a > bc

• Few theoretical results known

• Performance unpredictable

• When BDDs are manageable in size, model checking

is generally efficient

UW CSE P503 David Notkin ● Spring 2009 14

Symbolic Model Checking

• Define boolean state variables
– e.g., define X = xn-1, xn-2, …, x0 for an n-bit integer.

• A state set becomes a boolean function S(X)
– the formulae for even numbers, odd parity, etc.

• Set operations (,) become boolean
operations (,)

• Transition relation: R(X,X)

• Compute predecessors using boolean
operations: Pre(S) = X’. S(X’) R(X,X’)

UW CSE P503 15David Notkin ● Spring 2009

Burch et al.

Couder et al. Invariant Checking as Set Manipulation

• Compute Yi+1 = Pre (Yi) Yi

• Check if Yn Init =

Y
0
 = ErrY

1
...Y

n-1Y
n
 = Y

n-1
Y

n
 = Y

n-1

Init

States that

can reach an

Error State

Error

States

Backward breadth-first search

UW CSE P503 16David Notkin ● Spring 2009

Can the initial state ever

reach an error state?

Recap

• Check finite state machines vs. temporal logic

formulae: yes or no with counterexample

• Symbolic model checking represents everything as

BDDs and converts set operations over the state

space to boolean operations over sets of states

• Need state machines, efficient BDDs, temporal logic

formulae, etc.

UW CSE P503 David Notkin ● Spring 2009 17

Many FSM variations

• Deterministic and non-deterministic

• Mealy and Moore machines

• Transformers and acceptors

• Hierarchical state machines

– Statecharts

– RMSL

• The good news is that these are all theoretically

equivalent representations

• That leaves the size of the state space as a key issue

to address: in practice, state spaces have sufficient

structure to be managed even when they are huge

UW CSE P503 David Notkin ● Spring 2009 18

4/9/2009

4

Another key issue: abstraction

• Programs are not generally finite-state

– Classic trivial example: recognizing nested

parentheses requires unbounded state space (and

it can be worse than this)

• So to use model checking we need to acquire a

useful finite-state model

• Roughly two choices

– Directly find a useful finite-state model

– Produce a useful finite-state model from a non-

finite-state model – and understand clearly what is

and is not lost in that abstraction process

UW CSE P503 David Notkin ● Spring 2009 19

Check software specification

• Motivation: circa 1998-2000 – work here at UW CSE

• How to increase confidence in correctness of safety-

critical software?

• Existing techniques useful with limitations: inspection,

syntactic checking, simulation/testing, and theorem

proving

• Symbolic model checking successful for industrial

hardware

– Effective also for software?

– Many people‟s conjecture: No

UW CSE P503 David Notkin ● Spring 2009 20

Experts Said

• “The time and space complexity of [symbolic model checking] is

affected…by the regularity of specification. Software

requirements specifications lack this necessary regular

structure…” [Heimdahl & Leveson 96]

• “[Symbolic model checking] works well for hardware designs

with regular logical structures…However, it is less likely to

achieve similar reductions in software specifications whose

logical structures are less regular.” [Cheung & Kramer 99]

• “…[symbolic model checkers] are often able to exploit the

regularity…in many hardware designs. Because software

typically lacks this regularity, [symbolic] model checking seems

much less helpful for software verification.” [Emerson 97]

UW CSE P503 21David Notkin ● Spring 2009

Consider Safety-Critical Software

• Most costly bugs in specification

• Use analyzable formal specification

– State-machine specifications

– Intuitive to domain experts like aircraft engineers

– Statecharts [Harel 87], RSML [Leveson et al. 94],

SCR [Parnas et al.], etc.

UW CSE P503 David Notkin ● Spring 2009 22

Case Study 1: TCAS II

• Traffic Alert and Collision Avoidance System

– Reduce mid-air collisions: warn pilots of traffic and

issue resolution advisories

– “One of the most complex systems on commercial

aircraft.”

• 400-page specification reverse-engineered from

pseudo-code: written in RSML by Leveson et al.,

based on statecharts

UW CSE P503 David Notkin ● Spring 2009 23

Case Study 2: EPD System

• Electrical Power Distribution system used on Boeing 777

• Distribute power from sources to buses via circuit breakers

– Tolerate failures in power sources and circuit breakers

• Prototype specification in statecharts

• Analysis joint with Jones and Warner of Boeing

LGen RGen ...

LMain Rmain ...

power sources

power buses

circuit breakers

LGen RGen ...

LMain Rmain ...

UW CSE P503 24David Notkin ● Spring 2009

4/9/2009

5

Translation to SMV

0 1

x[c]/y

0 1

y

A

B

VAR

A: {0,1};

x: boolean;

y: boolean;

ASSIGN

init (A):= 0;

next (A):= case

A=0 & x & c : 1;

1 : A;

esac;

…

UW CSE P503 25David Notkin ● Spring 2009

Analyses and Results

• Used and modified SMV [McMillan 93]

TCAS II EPD System

State space 230 bits, 1060 states 90 bits, 1027 states

Prior verification inspection,

static analysis

simulation

Problems we found inconsistent outputs,

safety violations, etc.

violations of fault

tolerance

UW CSE P503 26David Notkin ● Spring 2009

Some Formulae Checked

• TCAS II
– Descent inhibition: AG (Alt < 1000 Descend)

– Output agreement: AG (GoalRate 0 Descend)

• EPD system

– AG (NoFailures
(LMain RMain LBackup RBackup))

– AG (AtMostOneFailure (LMain RMain))

– AG (AtMostTwoFailures (LBackup RBackup))

• Where do these come from?

UW CSE P503 27David Notkin ● Spring 2009

One example (EPD) counterexample

A single failure can cause a bus to lose power

1. Power-up sequence; normal operation

2. A circuit breaker fails

3. Other circuit breakers reconfigured to maintain
power

4. User changes some inputs

5. The first circuit breaker recovers

6. User turns off a generator

7. A bus loses power

This error
does not exist

in onboard
system

UW CSE P503 28David Notkin ● Spring 2009

Mutual Exclusion of Transitions

• Many “concurrent” transitions are sequential

– Determine using static analysis

• Use this to prune backward search

UW CSE P503 David Notkin ● Spring 2009 29

0 1

x[c]/y

0 1

y

A

B

Overall Effects on TCAS II

0

1

2

3

4

5

6

7

8

9

10

Min.

P1 P2 P3 P4 P5 P6

Without pruning

With pruning

>> 1 hour

UW CSE P503 30David Notkin ● Spring 2009

4/9/2009

6

Initial EPD Analyses Failed

• Even though it has fewer states than TCAS II

• Main difference in synchronization

– TCAS used “oblivious” synchronization –every

external event took the same number of state

transitions

– EPD used “non-oblivious” synchronization

• Solution: convert non-oblivious to oblivious and

maintain (most) properties

UW CSE P503 David Notkin ● Spring 2009 31

TCAS II EPD System

State space 230 bits, 1060 states 90 bits, 1027 states

Some Lessons Learned

• Focus on restricted models that people care about

• Exploit high-level knowledge to improve analysis

– Synchronization, environmental assumptions, etc.

– In addition to low-level BDD tricks

• Combine static analysis and symbolic model

checking

• Help understand system behaviors

– In addition to verification/falsification

UW CSE P503 David Notkin ● Spring 2009 32

Interlude

UW CSE P503 David Notkin ● Spring 2009 33

Recent email from a colleague

“Hall and Johnson, in March 09 Harvard Business Review, write an

interesting article that (1) questions undue commitment to variance-

reducing „scientific“‟ processes and (2) insists on the importance of

„artistic‟ processes – process definitions that expressly provide

„artists‟ with room to use judgment.

“They list „software development‟ as a domain in which artistic

processes are important. They see artists, in business, as typically

being *supported* by surrounding scientific processes. For

example, the neurosurgeon is an artist, but the nurses and prep

folks will do best following strict protocols. [It‟s] a pretty interesting

article, with implications for how we think about the role of process

formalization and enforcement in software development.”

UW CSE P503 David Notkin ● Spring 2009 34

Follow-up email from colleagues

“Seems like this all reduces to economics - taking risk in order to

achieve a benefit. Reducing variance is valuable when the

restriction is eliminating low-value cases off a known high-value

path. Artistic variance is valuable when no given path is known to

be high-value or maybe the space of options isn't even known – it

needs to be discovered.

“What I find interesting is the idea of low-variance support for high-

variance activities. Still, it's about value in a high-dimensional

space: the neurosurgeon isn't going to learn much by exploring the

part of the solution space that involves dirty scalpels. So the

surgeon's exploration of the solution space needs to be constrained

to dimensions of probable value. This article seems to propose a

rationale for decomposing the problem and the team into low- and

high-variance roles. Cognitively, this seems to make some sense.”

UW CSE P503 David Notkin ● Spring 2009 35

And more... “When to go „artistic‟”

• “when one suspects a higher value alternative might exist - better than

the known high-value one

• when all the knowledge about the values of paths originate from a

homogeneous set of sources

• when an assumption behind all the analytics seem deserving of

mistrust

• when the environment … seems poised to change but has not yet

• when all the known value paths have been explored too many times

• when it's hard to know the value or when you suspect you aren't

computing value correctly (enough)”

• … <some bullets elided>

“That is, I believe there are times to go artistic even when there might be

suitably high value paths in front of you.”

UW CSE P503 David Notkin ● Spring 2009 36

4/9/2009

7

So, whaddya think?

UW CSE P503 David Notkin ● Spring 2009 37

SLAM and SDV

• Technically interesting: how to effectively use model

checking to establish useful properties of an

important class of C programs

• Sociologically interesting: what it takes to transfer

technology – it‟s an ecosystem of sorts

– A much broader view of the ecosystem of creating

major high-tech industries can be found in

Innovation in Information Technology, The

National Academies Press, 2003
(http://www.nap.edu/catalog.php?record_id=10795)

UW CSE P503 David Notkin ● Spring 2009 38

Basic story

• Third-party device drivers caused a disproportionate

number of “blue screens” for Windows – costly in

time and effort, as well as in reputation for Microsoft

• Are major causes of the device driver errors

checkable automatically even though arbitrary C

code isn‟t fully checkable: infinite paths, aliasing, …

• Found an abstraction of drivers and properties to

check that allowed a combination of model checking

and symbolic execution to identify major classes of

errors in practice

• Oh, and tech transfer – beyond the scope of lecture

(but not of the wiki)

UW CSE P503 David Notkin ● Spring 2009 39

Evaluation and examples

• Applied SDV to 126 WDM

drivers (storage, USB, 1394-

interface, mouse, keyboard,

…)

– Well tested, code reviewed

by experts, in use for years,

26 were open source

– 48 to 130,000 LOC, average

of 12KLOC

• An initial study reported 206

defects: investigation of 65,

including working with the

code owners, classified 53

as true errors and 12 as

false errors

• In a path a driver marked an I/O request

packet pending with a kernel API, but

didn‟t mark it in a related data structure

• A driver‟s dispatch routine returned
STATUS PENDING but declared the I/O

request packet as completed with
IoCompleteRequest

• A driver called IoStartNextPacket

from within StartIo, which could lead to

recursion exceeding the stack space

• Early in the execution a device driver

called an API that can raise the interrupt

request level of the thread, and then

(much later) called another kernel API

that should not be called when the

interrupt request level is raised (because

it touches paged data)

• IoCompleteRequestwas called while

holding a spinlock, which could cause

deadlock

• …

UW CSE P503 David Notkin ● Spring 2009 40

Abstraction for SDV

• Focused goal: check that device drivers make proper

use of the driver API – not to check that the drivers

do the right thing (or even anything useful)

• Automatically abstracts the C code of a device driver

– Guarantees that any API usage rule violation in

the original code also appears in the abstraction

• Then check the abstraction – which is smaller and

more focused than the original code

UW CSE P503 David Notkin ● Spring 2009 41

Boolean predicate abstraction

• Translate to a representation that has all of C‟s control flow

constructs but only boolean variables that in turn track the state

of relevant boolean expressions in the C code

• These relevant expressions are selected based on predefined

API usage rules constructed for device drivers

• Consider a driver with 100 KLOC and complicated data

structures and checking for an API usage rule intended to verify

proper usage of a specific spinlock

• Abstract to a program that tracks, at each line of code, the state

of the spin lock as either locked or unlocked

• This leads to a boolean program with around 200,000 states,

which is manageable by model checking

UW CSE P503 David Notkin ● Spring 2009 42

http://www.nap.edu/catalog.php?record_id=10795

4/9/2009

8

API usage rules

• A state machine with two

components

– a static set of state
variables (a C struct)

– a set of events and

state transitions

• On right: rule for the proper

usage of spin locks

– one state variable

– two events on which

state transitions happen

– returns of calls to
acquire and release

state { enum {Unlocked, Locked}

state = Unlocked;

} watch KeAcquireSpinLock.$1;

KeAcquireSpinLock.return [guard $1] {

if (state == Locked) {

error;

} else {

state = Locked;

}

}

KeReleaseSpinLock.return [guard $1] {

if (state == Unlocked) {

error;

} else {

state = Unlocked;

}

}

UW CSE P503 David Notkin ● Spring 2009 43

Overall process (beyond abstraction)

• Given a boolean program with an error state, check

whether or not the error state is reachable – BDD-

based model-checking

• If the checker identifies an error path that is a feasible

execution path in the original C, then report an error

• If the path is not feasible then refine the boolean

program to eliminate the false path

• Use symbolic execution and a theorem prover to find

a set of predicates that eliminates the false error path

UW CSE P503 David Notkin ● Spring 2009 44

Overview of process

UW CSE P503 David Notkin ● Spring 2009 45

Figure from “Thorough Static Analysis of Device Drivers” (Ball et al. EuroSys 06))

A hot topic: many efforts including…

• BLAST: Berkeley Lazy Abstraction Software Verification Tool

(http://mtc.epfl.ch/software-tools/blast/)

– “The goal … is to be able to check that software satisfies behavioral

properties of the interfaces it uses. [It] uses counterexample-driven

automatic abstraction refinement to construct an abstract model which is

model checked for safety properties. The abstraction is constructed on-the-

fly, and only to the required precision.”

• VeriSoft (http://cm.bell-labs.com/who/god/verisoft/)

– “… automatically searches for coordination problems (deadlocks, etc.) and

assertion violations in a software system by generating, controlling, and

observing the possible executions and interactions of all its components.”

• Java PathFinder (http://javapathfinder.sourceforge.net/)

– “[It] is a Java Virtual Machine that is used as an explicit state software

model checker, systematically exploring all potential execution paths of a

program to find violations of properties like deadlocks or unhandled

exceptions. … [A] model checker has to employ flexible heuristics and state

abstractions. JPF is unique in terms of its configurability and extensibility,

and hence is a good platform to explore new ways to improve scalability.”

UW CSE P503 David Notkin ● Spring 2009 46

Thursday May 21?

• I‟m in Vancouver at the 2009 International

Conference on Software Engineering
(http://www.cs.uoregon.edu/events/icse2009/home/)

– Co-chairing the Doctoral Symposium

– New Ideas and Emerging Research paper/poster

• M. Nita and D. Notkin. White-Box Approaches

for Improved Testing and Analysis of

Configurable Software Systems

– Research paper

• M. Kim and D. Notkin. Discovering and

Representing Systematic Code Changes

• So, what do we do?
UW CSE P503 David Notkin ● Spring 2009 47

Possibilities include…

• Rescheduling

• Cancelling

• Guest lecture (hard, since many are also in

Vancouver)

– I have an excellent 1.5 hour Michael Jackson talk

available, though

• Class presentations on your state-of-the-art research

papers

• Other ideas?

UW CSE P503 David Notkin ● Spring 2009 48

http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://cm.bell-labs.com/who/god/verisoft/
http://cm.bell-labs.com/who/god/verisoft/
http://cm.bell-labs.com/who/god/verisoft/
http://javapathfinder.sourceforge.net/

4/9/2009

9

Bounded model checking

• The TCAS/EPD work avoided most abstraction by

starting with finite state specifications

• SLAM/SDV and other model checkers that work on

source code must abstract the program to get to a

finite state model

• Bounded model checking instead accepts an infinite

state machine along with a formula to check – and

then truncates the search space

– Guaranteed to find errors within the bound

– Errors outside the bound are not found

– Small scope hypothesis: a high proportion of bugs can be

found by testing a program for all test inputs within some

small scope

UW CSE P503 David Notkin ● Spring 2009 49

Alloy: Daniel Jackson @ MIT

• A bounded model checker/tool

• “Electrifies” formal descriptions

• Example models include caches, file stores, security

constraints (JVM), file system synchronization,

railway safety, peer-to-peer protocols, etc.

UW CSE P503 David Notkin ● Spring 2009 50

Silly example

sig Platform {} there are “Platform” things

sig Man {ceiling, floor: Platform}

each Man has a ceiling and a floor Platform

pred Above [m, n: Man] {m.floor = n.ceiling}

Man m is “above” Man n if m's floor is n's ceiling

fact {all m: Man | some n: Man | Above[n,m] }

"One Man's Ceiling Is Another Man's Floor“

assert BelowToo {

all m: Man | some n: Man | Above [m,n] }

"One Man's Floor Is Another Man's Ceiling"?

check BelowToo for 2

counterexample with 2 or less platforms and men?

UW CSE P503 David Notkin ● Spring 2009 51

Alloy finds a counterexample

One-minute paper

• Add directly to the wiki or email to me by close of

business tomorrow (or fill in a note card tonight if you

want to be anonymous)

– Key point?

– Open question?

– Mid-course correction?

• Yes, we‟ll do these most weeks

UW CSE P503 David Notkin ● Spring 2009 52

UW CSE P503 David Notkin ● Spring 2009 53

