Model Checking Lecture 2

Three important decisions when choosing system properties:

automata vs. logic
 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to substantially different model-checking problems.

If only universal properties are of interest, why not omit the path quantifiers? LTL (Linear Temporal Logic)

-safety & liveness -linear time

[Pnueli 1977; Lichtenstein & Pnueli 1982]

LTL Syntax

$\phi ::= \alpha \mid \phi \land \phi \mid \neg \phi \mid \bigcirc \phi \mid \phi \cup \phi$

LTL Model

infinite trace
$$t = t_0 t_1 t_2 ...$$

(sequence of observations)

Language of deadlock-free state-transition graph K at state q :

L(K,q) = set of infinite traces of K starting at q

$$\begin{array}{ll} (\mathsf{K},\mathsf{q}) \mid =^\forall \phi & \text{ iff } for all \ \mathsf{t} \in \mathsf{L}(\mathsf{K},\mathsf{q}), \ \mathsf{t} \mid = \phi \\ (\mathsf{K},\mathsf{q}) \mid =^\exists \phi & \text{ iff } exists \ \mathsf{t} \in \mathsf{L}(\mathsf{K},\mathsf{q}), \ \mathsf{t} \mid = \phi \end{array}$$

LTL Semantics

- t |= a
- t |= $\phi \land \psi$
- **†** |= ¬φ
- **†** |= Ο φ
- t |= $\phi U \psi$

- iff $a \in t_0$
- iff $t \models \phi$ and $t \models \psi$
- iff not t |= ϕ
- iff $t_1 t_2 ... = \phi$
- $\begin{array}{ll} \text{iff} & \text{exists } n \geq 0 \ \text{s.t.} \\ & 1. \ \text{for all } 0 \leq i < n, \ t_i \ t_{i+1} \ \dots \ |= \phi \\ & 2. \ t_n \ t_{n+1} \ \dots \ |= \psi \end{array}$

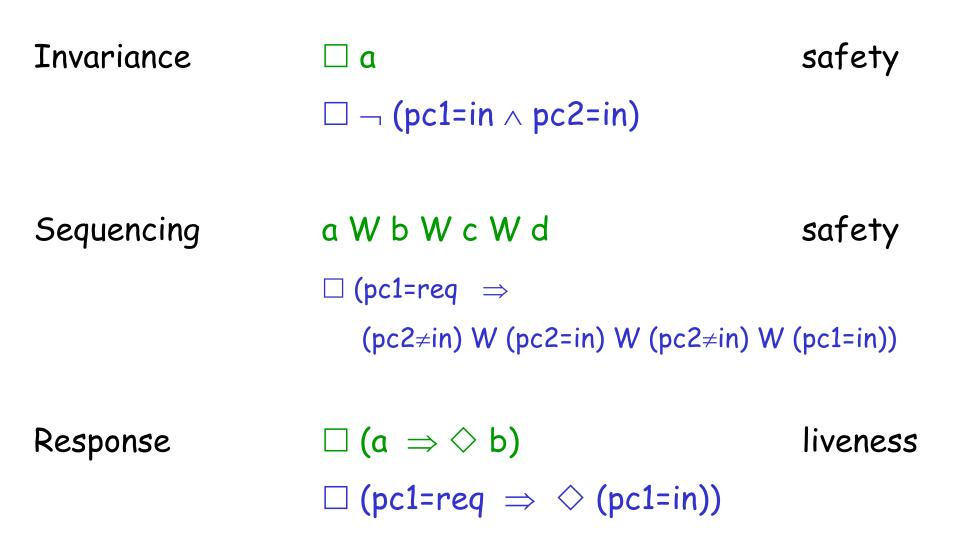
Defined modalities

 \bigcirc XnextUUuntil $\diamondsuit \phi$ = true U ϕ Feventually $\Box \phi$ = $\neg \diamondsuit \neg \phi$ Galways $\phi W \psi$ = $(\phi U \psi) \lor \Box \phi$ Wwaiting-for (weak-until)

Summary of modalities

STL $\exists \bigcirc \forall \bigcirc \exists \diamondsuit \forall \Box \exists U \forall W$ CTLall of the above and $\exists \Box \forall \diamondsuit \exists W \forall U$ LTL $\bigcirc \diamondsuit \Box U W$

Important properties



Composed modalities

 $\Box \diamondsuit \mathbf{a}$ $\Diamond \Box \mathbf{a}$

infinitely often a almost always a

Where did fairness go?

Unlike in CTL, fairness can be expressed in LTL ! So there is no need for fairness in the model.

Weak (Buchi) fairness : $\neg \Diamond \Box$ (enabled $\land \neg$ taken) = $\Box \diamondsuit$ (enabled \Rightarrow taken)

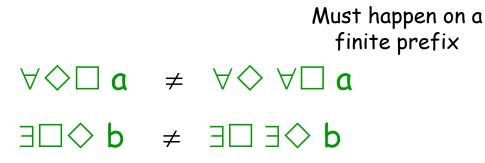
Strong (Streett) fairness :

(\Box \diamond enabled) \Rightarrow (\Box \diamond taken)

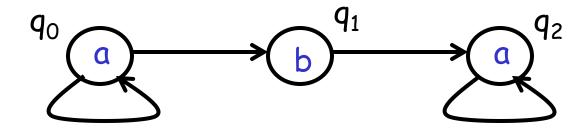
Starvation freedom, corrected

 $\Box \diamondsuit (pc2=in \Rightarrow \bigcirc (pc2=out)) \Rightarrow \\ \Box (pc1=req \Rightarrow \diamondsuit (pc1=in))$

CTL cannot express fairness



Must be an infinite run



LTL cannot express branching

Possibility $\forall \Box (a \Rightarrow \exists \diamond b)$

So, LTL and CTL are incomparable.

(There are branching logics that can express fairness, e.g., CTL* = CTL + LTL, but they lose the computational attractiveness of CTL.)

System property: 2x2x2 choices

-safety (finite runs) vs. liveness (infinite runs)
-linear time (traces) vs. branching time (trees)
-logic (declarative) vs. automata (operational)

Specification Automata

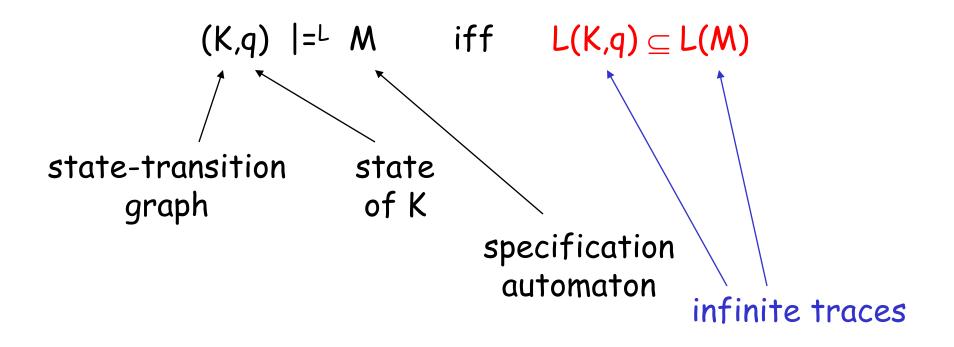
Syntax, given a set A of atomic observations:

Language L(M) of specification automaton $M = (S, S_0, \rightarrow, \phi):$

infinite trace
$$t_0, t_1, ... \in L(M)$$

iff
there exists a infinite run $s_0 \rightarrow s_1 \rightarrow ...$ of M
such that
for all $0 \le i$, $t_i \models \phi(s_i)$

Linear semantics of specification automata: language containment



 $L^{fin}(K,q) = set of finite traces of K starting at q$ $L^{fin}(M)$ defined as follows:

finite trace
$$t_0, ..., t_n \in L^{fin}(M)$$

iff

there exists a finite run $s_0 \rightarrow s_1 \rightarrow ... \rightarrow s_n$ of M such that for all $0 \le i \le n$, $t_i \models \phi(s_i)$ $(K,q) \mid =^{L} M$ iff $L(K,q) \subseteq L(M)$ iff $L^{fin}(K,q) \subseteq L^{fin}(M)$

Proof requires three facts:

- K is deadlock-free

- every state in K has a transition from it

- M is finite-branching:

- number of transitions from a state in M is bounded

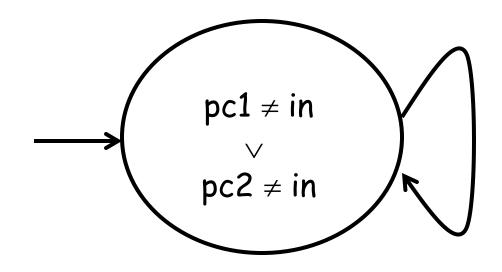
- Konig's lemma

- A finite-branching infinite tree has an infinite path

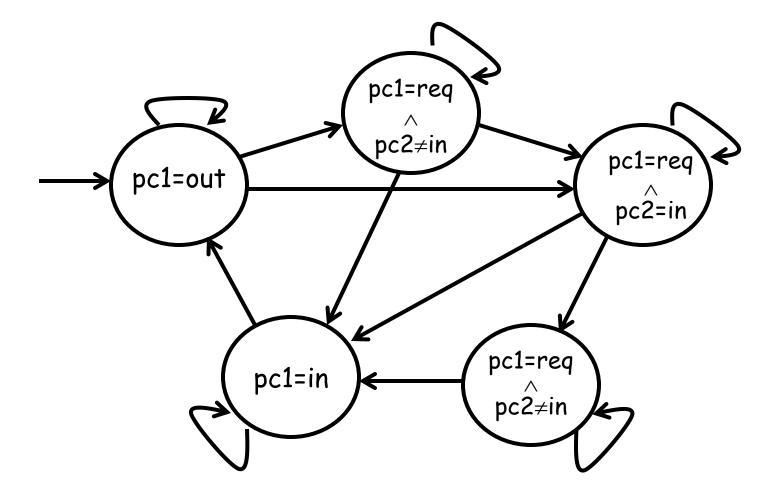
 $(K,q) \mid =^{L} M$ iff $L^{fin}(K,q) \subseteq L^{fin}(M)$

To verify $(K,q) \mid =^{L} M$, check finitary trace-containment

Invariance specification automaton

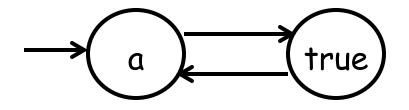


One-bounded overtaking specification automaton

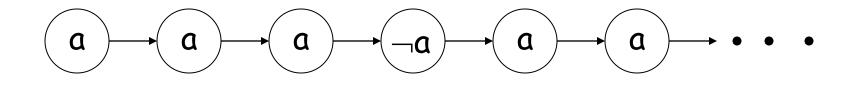


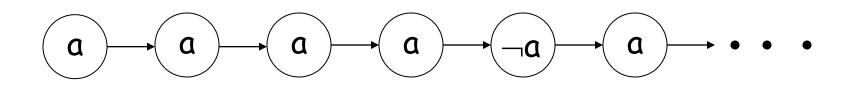
Automata are more expressive than logic, because temporal logic cannot count :

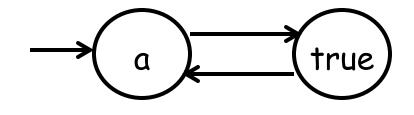
Let $A = \{a\}$

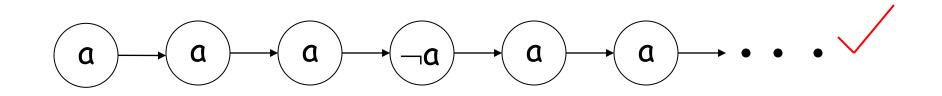


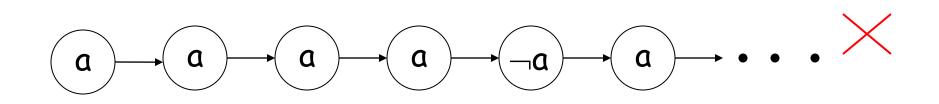
This cannot be expressed in LTL. (How about $a \land \Box$ ($a \Rightarrow \bigcirc \bigcirc a$) ?)



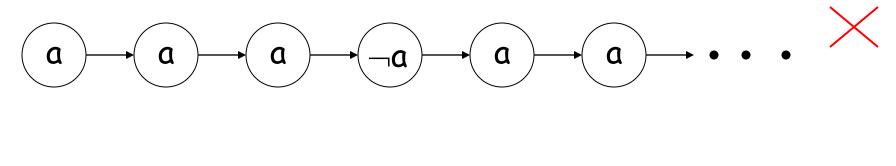


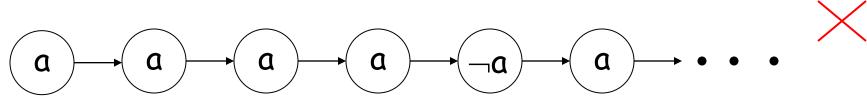




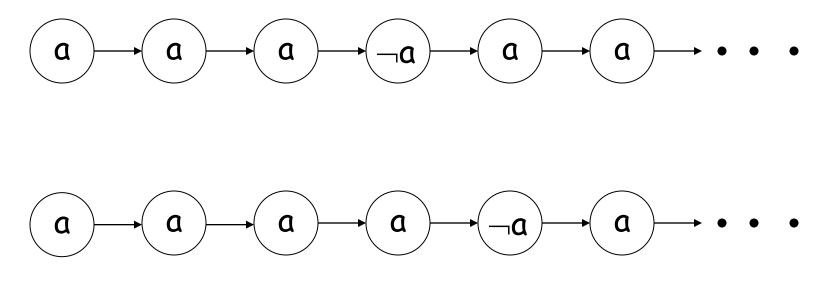


$a \land \Box$ ($a \Rightarrow \bigcirc \bigcirc a$)



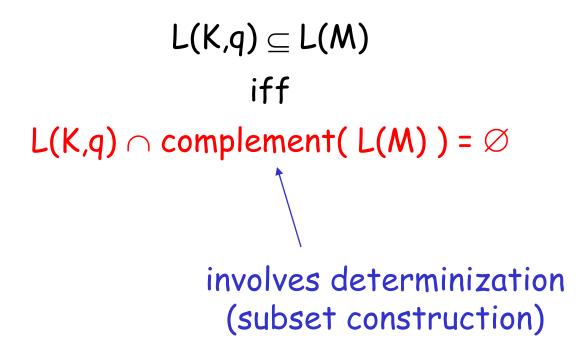


In fact, no LTL formula with at most two occurrences of \bigcirc can distinguish between the two traces.



Proof?

Checking language containment between finite automata is PSPACE-complete !



In practice:

- 1. use monitor automata
- 2. use simulation as a sufficient condition

Monitor Automata

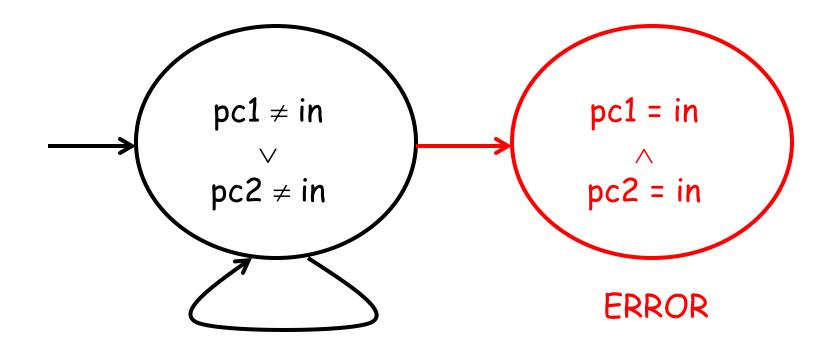
Syntax:

same as specification automata, except also set $E \subseteq S$ of error states

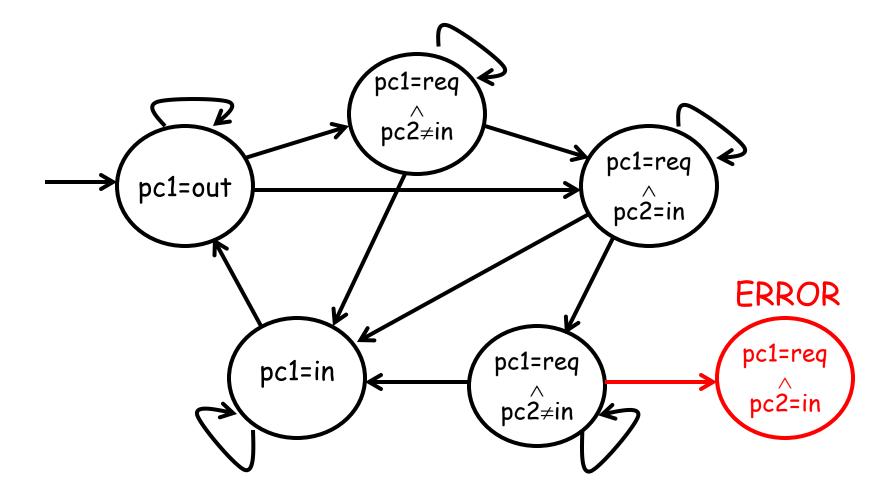
Semantics:

define L(M) s.t. runs must end in error states (K,q) $|=^{C} M$ iff $L(K,q) \cap L(M) = \emptyset$

Invariance monitor automaton



One-bounded overtaking monitor automaton



Specification automaton

Monitor automaton

M complement(M)

-describe correct traces -check language containment (exponential) -describe error traces

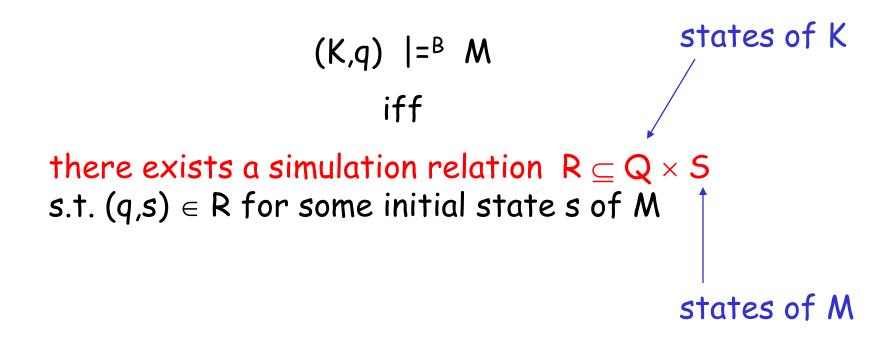
-check emptiness (linear): reachability of error states

"All safety verification is reachability checking."

In practice:

- 1. use monitor automata
- 2. use simulation as sufficient condition

Branching semantics of specification automata: simulation

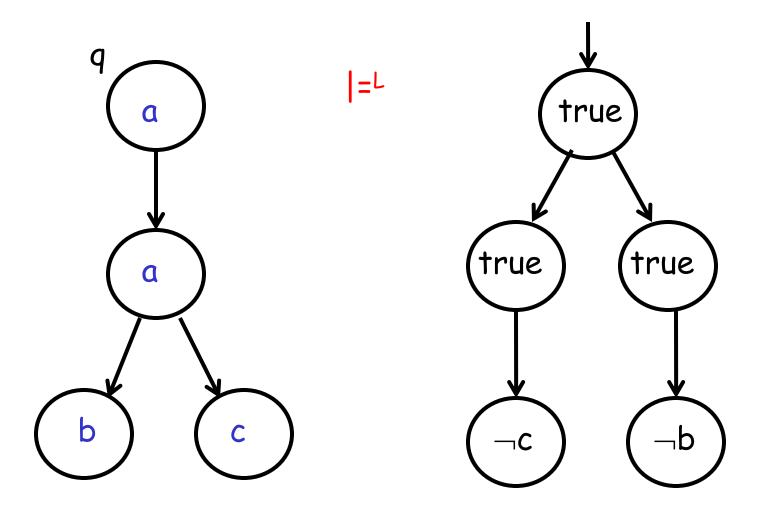


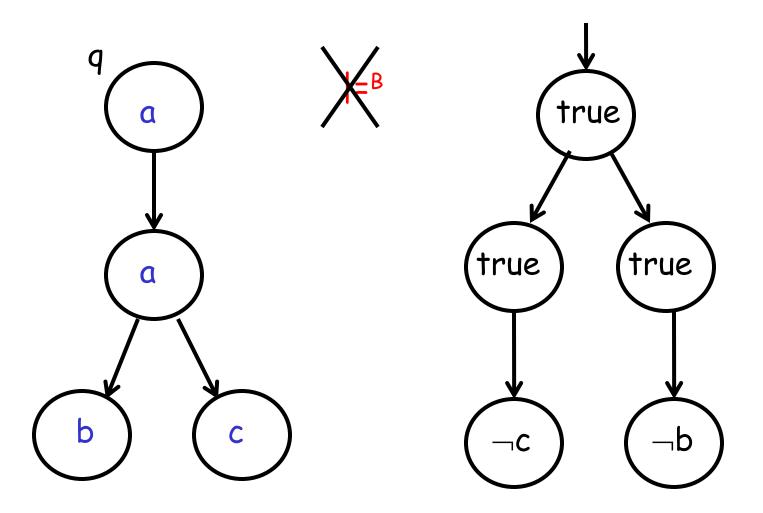
$R \subseteq Q \times S$ is a simulation relation iff

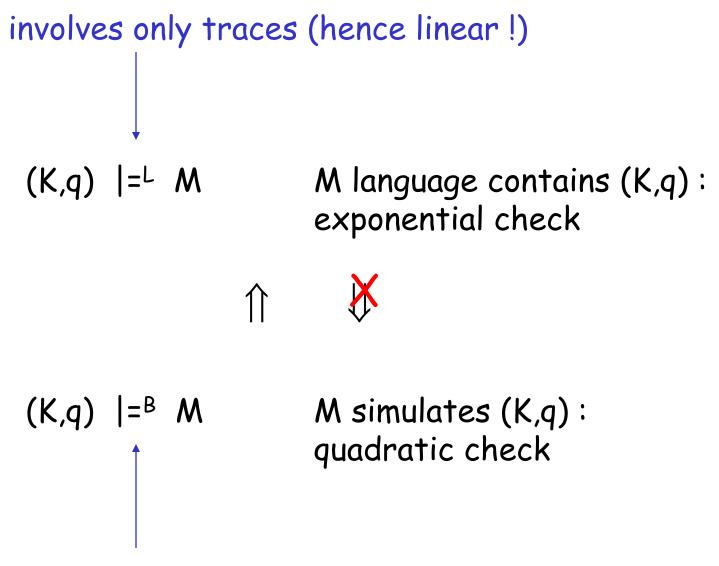
 $(q,s) \in R$ implies

- 1. [q] |= ∳(s)
- 2. for all q' s.t. $q \rightarrow q'$, exists s' s.t. $s \rightarrow s'$ and $(q',s') \in \mathbb{R}$.

[Milner 1974]





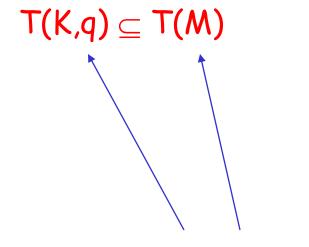


involves states (hence branching !)

In practice, simulation is usually the "right" notion. (If there is language containment, but not simulation, this is usually accidental, not by design.)

Branching semantics of specification automata, alternative definition:

trace-tree containment



finite trace trees

Omega Automata

-safety & liveness (infinite runs !)
-specification vs. monitor automata
-linear (language containment) vs.
branching (simulation) semantics

We discuss only the linear specification case.

Specification Omega Automata

Syntax as for finite automata, in addition an acceptance condition:

Buchi:
$$BA \subseteq S$$

Language L(M) of specification omega-automaton $M = (S, S_0, \rightarrow, \phi, BA):$

infinite trace
$$t_0, t_1, ... \in L(M)$$

iff

there exists an infinite run $s_0 \rightarrow s_1 \rightarrow ...$ of M such that

1. $s_0 \rightarrow s_1 \rightarrow ...$ satisfies BA

2. for all $i \ge 0$, $t_i \models \phi(s_i)$

Let $Inf(s) = \{ p | p = s_i \text{ for infinitely many } i \}.$

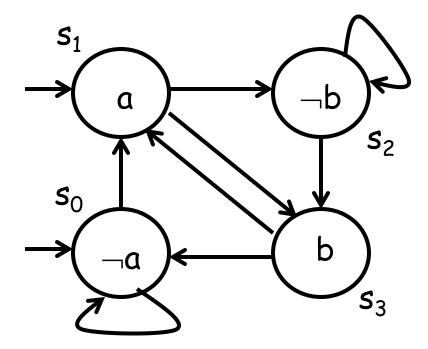
The infinite run s satisfies the acceptance condition BA iff

Buchi: $Inf(s) \cap BA \neq \emptyset$

Linear semantics of specification omega automata: omega-language containment

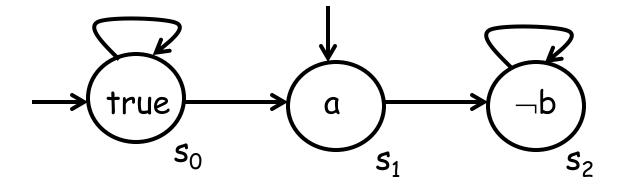
$(K,q) \models M \quad \text{iff} \quad L(K,q) \subseteq L(M)$ $\uparrow \qquad \uparrow \qquad \uparrow$ infinite traces

Response specification automaton : \Box (a \Rightarrow \diamond b) assuming (a \land b) = false

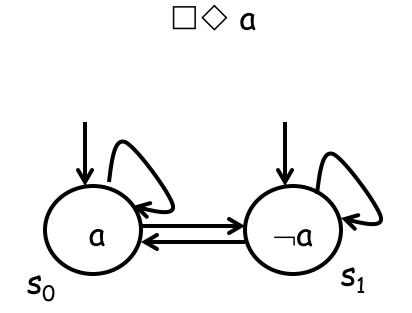


Buchi condition $\{s_0, s_3\}$

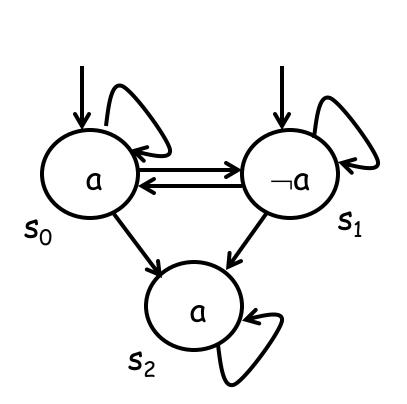
Response monitor automaton : \Box (a \Rightarrow \diamond b) assuming (a \land b) = false



Buchi condition $\{s_2\}$



Buchi condition $\{s_0\}$

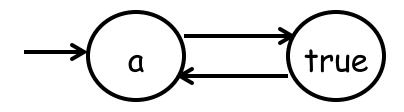


 $\Box a$

Buchi condition $\{s_2\}$

Omega automata are strictly more expressive than LTL.

Omega-automata: omega-regular languages U LTL: counter-free omega-regular languages



$(\forall p) (p \land \bigcirc \neg p \land \square (p \Leftrightarrow \bigcirc \bigcirc p) \Rightarrow \square (p \Rightarrow a))$

 $\begin{array}{l} (\forall p) (p(0) \land \neg p(1) \land (\forall \dagger) (p(\dagger) \Leftrightarrow p(\dagger + 2)) \Rightarrow \\ (\forall \dagger) (p(\dagger) \Rightarrow a(\dagger))) \end{array}$

(a; true)^ω