
Model Checking 

Lecture 2 



Three important decisions when choosing system properties: 

1 automata vs. logic 

2 branching vs. linear time  

3 safety vs. liveness 

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.  



If only universal properties are of interest, 

why not omit the path quantifiers? 



LTL (Linear Temporal Logic) 

-safety & liveness 

-linear time 

[Pnueli 1977;  Lichtenstein & Pnueli 1982] 



LTL Syntax 

   ::=   a  |      |     |     |   U  



LTL Model 

infinite trace  t = t0 t1 t2 ... 
(sequence of observations) 



(K,q) |=         iff     for all  t  L(K,q),  t |=  

(K,q) |=         iff     exists  t  L(K,q),  t |=  

 

Language of deadlock-free state-transition graph K 
at state q : 

L(K,q)  =  set of infinite traces of K starting at q 



LTL Semantics 

t  |=  a  iff    a  t0 

t  |=             iff    t |=   and  t |=  

t  |=               iff    not  t |=  

t  |=                   iff     t1 t2 ... |=  

t  |=   U    iff     exists  n  0  s.t.  
    1.  for all 0  i < n,  ti ti+1 ... |= 
                      2.  tn tn+1 ... |=  



             X        next 

U             U        until 

   =  true U                F eventually 

   =               G        always 

 W  =  ( U )       W       waiting-for (weak-until) 

Defined modalities 



Summary of modalities 

STL              U   W 

CTL  all of the above and        W   U 

LTL           U   W    



Important properties 

Invariance   a     safety 

                              (pc1=in  pc2=in) 

 

Sequencing             a W b W c W d   safety 

                              (pc1=req    

                              (pc2in) W (pc2=in) W (pc2in) W (pc1=in)) 

 

Response   (a    b)   liveness 

                            (pc1=req     (pc1=in)) 



Composed modalities 

 a   infinitely often  a 

 a   almost always  a 



Where did fairness go ? 



Unlike in CTL, fairness can be expressed in LTL ! 

So there is no need for fairness in the model. 

Weak (Buchi) fairness : 

   (enabled   taken )  = 

  (enabled    taken) 

 

Strong (Streett) fairness : 

 (  enabled )    (  taken ) 



Starvation freedom, corrected 

 (pc2=in     (pc2=out))   

 (pc1=req     (pc1=in)) 



CTL cannot express fairness 

 a         a 

 b         b 

b a a 
q0 q1 q2 

Must happen on a 
finite prefix 

Must be an infinite 
run 



LTL cannot express branching 

Possibility         (a    b) 

So,  LTL  and  CTL  are incomparable. 

(There are branching logics that can express fairness, 
e.g., CTL* = CTL + LTL, but they lose the computational 
attractiveness of CTL.)  



  -safety (finite runs) vs. liveness (infinite runs)  

  -linear time (traces) vs. branching time (trees) 

-logic (declarative) vs. automata (operational) 

System property:   2x2x2 choices 



Specification Automata 

Syntax, given a set A of atomic observations: 

S   finite set of states 

S0  S  set of initial states 

  S  S      transition relation 

: S  PL(A)   where the formulas of PL are 

        ::=   a  |      |     

  for  a  A 



Language L(M) of specification automaton  

M = (S, S0, ,  ) : 

infinite trace  t0, t1, ...  L(M) 

iff 

there exists a infinite run  s0  s1  ...  of M 

such that  

for all  0  i,   ti |= (si) 



(K,q)  |=L  M        iff      L(K,q)  L(M) 

Linear semantics of specification automata: 

language containment 

state-transition 
graph 

state 
of K 

specification 
automaton  

infinite traces 



finite trace  t0, ..., tn  Lfin(M) 

iff 

there exists a finite run  s0  s1  ...  sn  of M 

such that  

for all  0  i  n,   ti |= (si) 

Lfin(K,q)  =  set of finite traces of K starting at q 

Lfin(M) defined as follows: 



(K,q)  |=L  M 

 iff 

L(K,q)  L(M) 

iff 

Lfin(K,q)  Lfin(M) 

Proof requires three facts: 
- K is deadlock-free  

- every state in K has a transition from it 
- M is finite-branching:  

- number of transitions from a state in M is bounded 
- Konig’s lemma 

- A finite-branching infinite tree has an infinite path 



(K,q)  |=L  M 

iff 

Lfin(K,q)  Lfin(M) 

To verify (K,q)  |=L  M, check finitary trace-containment 



Invariance specification automaton 

 pc1  in  
 

 pc2  in 



One-bounded overtaking specification automaton 

pc1=out 

pc1=req       
 

pc2in 
pc1=req 

   
pc2=in 

pc1=in 
pc1=req 

 
pc2in 



Automata are more expressive than logic, 
because temporal logic cannot count : 

This cannot be expressed in LTL. 

(How about  a   (a  a)  ?) 

a true 

Let A = { a } 



a a a a a 

a a a a a 

a 

a 



a a a a a 

a a a a a 

a true 

a 

a 



a a a a a 

a a a a a 

a   (a  a) 

a 

a 



a a a a a 

a a a a a 

a 

a 

In fact, no LTL formula with at most two occurrences 
of  can distinguish between the two traces. 

Proof? 



Checking language containment between 
finite automata is PSPACE-complete ! 

 L(K,q)  L(M)  

iff 

L(K,q)  complement( L(M) ) =  

involves determinization 
(subset construction) 



In practice: 

  1.  use monitor automata  

  2.  use simulation as a sufficient condition 



Monitor Automata 

Syntax: 

 same as specification automata,  
 except also set  E  S  of error states 

Semantics: 

           define  L(M)  s.t. runs must end in error states 

           (K,q)  |=C  M        iff      L(K,q)  L(M) =  



Invariance monitor automaton 

pc1  in  
 

pc2  in  

pc1 = in  
 

pc2 = in 

ERROR 



One-bounded overtaking monitor automaton 

pc1=out 

pc1=req 
 

pc2in 
pc1=req 

 
pc2=in 

pc1=in pc1=req 
 

pc2in 

pc1=req 
 

pc2=in 

ERROR 



Specification automaton  Monitor automaton 

 

                 M                                complement(M) 

 

-describe correct traces  -describe error traces 

-check language containment -check emptiness (linear):    
(exponential)            reachability of error states  

“All safety verification is 
reachability checking.” 



In practice: 

  1.  use monitor automata  

  2.  use simulation as sufficient condition 



(K,q)  |=B  M         

iff 

there exists a simulation relation  R  Q  S  
s.t. (q,s)  R for some initial state s of M 

Branching semantics of specification automata: 

simulation 

states of K 

states of M 



R  Q  S  is a simulation relation 

iff 

(q,s)  R implies 

1. [q]  |= (s) 

2. for all  q’  s.t.  q  q’ ,          
exists  s’  s.t.  s  s’  and  (q’,s’)  R. 

[Milner 1974] 



a 

a 

c b c 

q 
|=L 

b 

true 

true true 



a 

a 

c b c 

q 
|=B 

b 

true 

true true 



(K,q)  |=L  M  M language contains (K,q) : 
   exponential check 
 
 
 
 
(K,q)  |=B  M  M simulates (K,q) : 
   quadratic check 

       X 

involves only traces (hence linear !) 

involves states (hence branching !) 



In practice, simulation is usually the “right” notion. 

(If there is language containment, but not simulation,  
this is usually accidental, not by design.) 



Branching semantics of specification automata, 
alternative definition: 

trace-tree containment 

(K,q)  |=B  M        iff      T(K,q)  T(M) 

 

finite trace trees 



-safety & liveness (infinite runs !) 

-specification vs. monitor automata 

-linear (language containment) vs.        
branching (simulation) semantics 

We discuss only the linear specification case. 

 Omega Automata 



Specification Omega Automata 

Syntax as for finite automata,                     
in addition an acceptance condition:  

Buchi:  BA   S 



Language L(M) of specification omega-automaton  

M = (S, S0, , , BA ) : 

infinite trace  t0, t1, ...  L(M)   

iff 

there exists an infinite run  s0  s1  ...  of M 

such that  

 1.  s0  s1  ...  satisfies BA 

 2. for all  i  0,   ti |= (si) 



Let  Inf(s) = { p | p = si  for infinitely many i }. 

The infinite run  s  satisfies the acceptance condition BA 

iff 

Buchi:  Inf(s)  BA   



(K,q)  |=L  M        iff      L(K,q)  L(M) 

 

Linear semantics of specification omega automata: 

omega-language containment 

infinite traces 



Response specification automaton : 

 (a  b)   assuming  (a  b) = false 

a b 

b a 

s1 

s2 

s3 

s0 

Buchi condition  { s0, s3 } 



Response monitor automaton : 

 (a  b)   assuming  (a  b) = false 

a b 

s1 s2 

Buchi condition  { s2 } 

s0 

true 



a a 

s0 s1 

Buchi condition  { s0 } 

 a 



a a 

s0 s1 

Buchi condition  { s2 } 

 a 

a 

s2 



Omega automata are strictly more expressive than LTL. 

Omega-automata: omega-regular languages 

 

LTL:   counter-free omega-regular languages 



a true 

(p) ( p  p  (p  p)    (p  a)) 

 

(p) ( p(0)  p(1)  (t) (p(t)  p(t+2))         
 (t) (p(t)  a(t))) 

 

(a; true) 

 


