
Model Checking

Lecture 2

Three important decisions when choosing system properties:

1 automata vs. logic

2 branching vs. linear time

3 safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

If only universal properties are of interest,

why not omit the path quantifiers?

LTL (Linear Temporal Logic)

-safety & liveness

-linear time

[Pnueli 1977; Lichtenstein & Pnueli 1982]

LTL Syntax

 ::= a | | | | U

LTL Model

infinite trace t = t0 t1 t2 ...
(sequence of observations)

(K,q) |= iff for all t L(K,q), t |=

(K,q) |= iff exists t L(K,q), t |=

Language of deadlock-free state-transition graph K
at state q :

L(K,q) = set of infinite traces of K starting at q

LTL Semantics

t |= a iff a t0

t |= iff t |= and t |=

t |= iff not t |=

t |= iff t1 t2 ... |=

t |= U iff exists n 0 s.t.
 1. for all 0 i < n, ti ti+1 ... |=
 2. tn tn+1 ... |=

 X next

U U until

 = true U F eventually

 = G always

 W = (U) W waiting-for (weak-until)

Defined modalities

Summary of modalities

STL U W

CTL all of the above and W U

LTL U W

Important properties

Invariance a safety

 (pc1=in pc2=in)

Sequencing a W b W c W d safety

 (pc1=req

 (pc2in) W (pc2=in) W (pc2in) W (pc1=in))

Response (a b) liveness

 (pc1=req (pc1=in))

Composed modalities

 a infinitely often a

 a almost always a

Where did fairness go ?

Unlike in CTL, fairness can be expressed in LTL !

So there is no need for fairness in the model.

Weak (Buchi) fairness :

 (enabled taken) =

 (enabled taken)

Strong (Streett) fairness :

 (enabled) (taken)

Starvation freedom, corrected

 (pc2=in (pc2=out))

 (pc1=req (pc1=in))

CTL cannot express fairness

 a a

 b b

b a a
q0 q1 q2

Must happen on a
finite prefix

Must be an infinite
run

LTL cannot express branching

Possibility (a b)

So, LTL and CTL are incomparable.

(There are branching logics that can express fairness,
e.g., CTL* = CTL + LTL, but they lose the computational
attractiveness of CTL.)

 -safety (finite runs) vs. liveness (infinite runs)

 -linear time (traces) vs. branching time (trees)

-logic (declarative) vs. automata (operational)

System property: 2x2x2 choices

Specification Automata

Syntax, given a set A of atomic observations:

S finite set of states

S0 S set of initial states

 S S transition relation

: S PL(A) where the formulas of PL are

 ::= a | |

 for a A

Language L(M) of specification automaton

M = (S, S0, ,) :

infinite trace t0, t1, ... L(M)

iff

there exists a infinite run s0 s1 ... of M

such that

for all 0 i, ti |= (si)

(K,q) |=L M iff L(K,q) L(M)

Linear semantics of specification automata:

language containment

state-transition
graph

state
of K

specification
automaton

infinite traces

finite trace t0, ..., tn Lfin(M)

iff

there exists a finite run s0 s1 ... sn of M

such that

for all 0 i n, ti |= (si)

Lfin(K,q) = set of finite traces of K starting at q

Lfin(M) defined as follows:

(K,q) |=L M

 iff

L(K,q) L(M)

iff

Lfin(K,q) Lfin(M)

Proof requires three facts:
- K is deadlock-free

- every state in K has a transition from it
- M is finite-branching:

- number of transitions from a state in M is bounded
- Konig’s lemma

- A finite-branching infinite tree has an infinite path

(K,q) |=L M

iff

Lfin(K,q) Lfin(M)

To verify (K,q) |=L M, check finitary trace-containment

Invariance specification automaton

 pc1 in

 pc2 in

One-bounded overtaking specification automaton

pc1=out

pc1=req

pc2in
pc1=req

pc2=in

pc1=in
pc1=req

pc2in

Automata are more expressive than logic,
because temporal logic cannot count :

This cannot be expressed in LTL.

(How about a (a a) ?)

a true

Let A = { a }

a a a a a

a a a a a

a

a

a a a a a

a a a a a

a true

a

a

a a a a a

a a a a a

a (a a)

a

a

a a a a a

a a a a a

a

a

In fact, no LTL formula with at most two occurrences
of can distinguish between the two traces.

Proof?

Checking language containment between
finite automata is PSPACE-complete !

 L(K,q) L(M)

iff

L(K,q) complement(L(M)) =

involves determinization
(subset construction)

In practice:

 1. use monitor automata

 2. use simulation as a sufficient condition

Monitor Automata

Syntax:

 same as specification automata,
 except also set E S of error states

Semantics:

 define L(M) s.t. runs must end in error states

 (K,q) |=C M iff L(K,q) L(M) =

Invariance monitor automaton

pc1 in

pc2 in

pc1 = in

pc2 = in

ERROR

One-bounded overtaking monitor automaton

pc1=out

pc1=req

pc2in
pc1=req

pc2=in

pc1=in pc1=req

pc2in

pc1=req

pc2=in

ERROR

Specification automaton Monitor automaton

 M complement(M)

-describe correct traces -describe error traces

-check language containment -check emptiness (linear):
(exponential) reachability of error states

“All safety verification is
reachability checking.”

In practice:

 1. use monitor automata

 2. use simulation as sufficient condition

(K,q) |=B M

iff

there exists a simulation relation R Q S
s.t. (q,s) R for some initial state s of M

Branching semantics of specification automata:

simulation

states of K

states of M

R Q S is a simulation relation

iff

(q,s) R implies

1. [q] |= (s)

2. for all q’ s.t. q q’ ,
exists s’ s.t. s s’ and (q’,s’) R.

[Milner 1974]

a

a

c b c

q
|=L

b

true

true true

a

a

c b c

q
|=B

b

true

true true

(K,q) |=L M M language contains (K,q) :
 exponential check

(K,q) |=B M M simulates (K,q) :
 quadratic check

 X

involves only traces (hence linear !)

involves states (hence branching !)

In practice, simulation is usually the “right” notion.

(If there is language containment, but not simulation,
this is usually accidental, not by design.)

Branching semantics of specification automata,
alternative definition:

trace-tree containment

(K,q) |=B M iff T(K,q) T(M)

finite trace trees

-safety & liveness (infinite runs !)

-specification vs. monitor automata

-linear (language containment) vs.
branching (simulation) semantics

We discuss only the linear specification case.

 Omega Automata

Specification Omega Automata

Syntax as for finite automata,
in addition an acceptance condition:

Buchi: BA S

Language L(M) of specification omega-automaton

M = (S, S0, , , BA) :

infinite trace t0, t1, ... L(M)

iff

there exists an infinite run s0 s1 ... of M

such that

 1. s0 s1 ... satisfies BA

 2. for all i 0, ti |= (si)

Let Inf(s) = { p | p = si for infinitely many i }.

The infinite run s satisfies the acceptance condition BA

iff

Buchi: Inf(s) BA

(K,q) |=L M iff L(K,q) L(M)

Linear semantics of specification omega automata:

omega-language containment

infinite traces

Response specification automaton :

 (a b) assuming (a b) = false

a b

b a

s1

s2

s3

s0

Buchi condition { s0, s3 }

Response monitor automaton :

 (a b) assuming (a b) = false

a b

s1 s2

Buchi condition { s2 }

s0

true

a a

s0 s1

Buchi condition { s0 }

 a

a a

s0 s1

Buchi condition { s2 }

 a

a

s2

Omega automata are strictly more expressive than LTL.

Omega-automata: omega-regular languages

LTL: counter-free omega-regular languages

a true

(p) (p p (p p) (p a))

(p) (p(0) p(1) (t) (p(t) p(t+2))
 (t) (p(t) a(t)))

(a; true)

