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Lecture 2, Outline [approximate minutes]

◆ Administrivia (rescheduling) [5]

◆ Basic design concepts (coupling, cohesion, etc.) [20]

◆ Information hiding [20]

◆ Layered systems [20]

◆ Break [10]

◆ Roundtable:
– Design problems you face [30]

– How you do design [15]

◆ Implicit invocation & mediator-based design [30]

◆ Wrap-up and slop [20]
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Design: management of complexity

◆ We have to decompose large systems to be
able to build them

» The “modern” problem of composing systems from
pieces will be equally or more important

◆ For software, we have decomposition
techniques that are distinct from those used
in physical systems
– Very few constraints are imposed by the

material
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Design, design, design

◆ Design is a continuous activity in software
development
– High-level (architectural) design

» What pieces?  How connected?

– Low-level design
» Should I use a hash table or binary search tree?

– Very-low-level design
» Variable naming, specific control constructs, etc.

Our
primary
focus
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Which decomposition?

◆ How do we select a decomposition?
– We determine the desired criteria

– We select a decomposition (design) that will
achieve those criteria

◆ In theory, that is; but in practice, it’s hard to
– Determine the desired criteria with precision

– Tradeoff among various conflicting criteria

– Figure out if a design satisfies given criteria
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Structure

◆ The focus of most design approaches is
structure

◆ What are the components and how are they
put together?

◆ Behavior is important, but less so than
structure (during architectural design)
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So what happens?

◆ People often buy into a particular approach
or methodology
– Ex: functional decomposition, data decomposition,

object-oriented programming, information hiding,
layering, JSD, Hatley-Pirbai, etc.

◆ “Beware a methodologist who is more
interested in his methodology than in your
problem.” (Michael Jackson)
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Properties of design [Bergland]

◆ Cohesion

◆ Coupling

◆ Complexity

◆ Correctness

◆ Correspondence

◆ Makes designs “better”, one presumes

◆ Worth paying attention to
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Cohesion

◆ The reason that elements are found together
in a module
– Ex: coincidental, temporal, functional, …

◆ The details aren’t critical, but the intent is
useful

◆ During maintenance, one of the major
structural degradations is in cohesion
– Need for “logical remodularization”
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Coupling
◆ “Strength of interconnection between

modules”
◆ Hierarchies are touted as a wonderful

coupling structure, limiting
interconnections

◆ Coupling also degrades over time
– “I just need one function from that module…”
– Low coupling vs. no coupling

◆ Can’t live without coupling
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It’s easy to...

◆ ..reduce coupling by calling a system a
single module

◆ …increase cohesion by calling a system a
single module

◆ No satisfactory measure of coupling
– Either across modules or across a system
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Complexity

◆ Well, yeah

◆ Bergland essentially said, “design for test”
under his discussion of complexity
– There may be a lesson here from model

checking in hardware
» Properties of a finite state space can often be

checked even where there is enormous complexity

◆ Again, no useful measures exist
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Correctness

◆ Well, yeah

◆ Even if you “prove” modules are correct,
composing the modules’ behaviors to
determine the system’s behavior is hard
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Correspondence

◆ “Problem-program mapping”

◆ The way in which the design is associated
with the requirements

◆ The idea is that the simpler the mapping,
the easier it will be to accommodate change
in the design when the requirements change
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Functional decomposition

◆ Divide-and-conquer based on functions
– input

compute
output

◆ More effective in the face of stable
requirements
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Question

◆ To what degree do you consider your
systems
– as having modules?

– as consisting of a set of files?
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Physical structure
◆ Almost all the literature focuses on logical

structures in design

◆ But physical structure plays a big role in
practice
– Sharing

– Separating work assignments

– Degradation over time

◆ Why so little attention paid to this?
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Information hiding

◆ Information hiding [Parnas 1972] is perhaps
the most important intellectual tool
developed to support software design

◆ Provides the fundamental motivation for
abstract data type languages
– And thus a key idea in the object-oriented

world, too

◆ The conceptual basis is key (IMHO)
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Basics of information hiding
◆ Modularize based on anticipated change

– Fundamentally different from Brooks’ approach in
OS/360 (see old and new MMM)

◆ Separate interfaces from implementations
– Implementations capture decisions likely to change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

◆ Modules are also work assignments
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Capturing anticipated changes

◆ The most common anticipated change is
“change of representation”
– Anticipating changing the representation of

data and associated functions (or just functions)

– A key notion behind abstract data types (ADTs)

◆ Ex:
– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings
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Claim

◆ We less frequently change representations than we
used to
– We have significantly more knowledge about data

structure design than we did 25 years ago

– Memory is less often a problem than it was previously,
since it’s much less expensive

◆ Therefore, we should think twice about
anticipating that representations will change

– This is important, since we can’t
simultaneously anticipate all changes
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Other anticipated changes?

◆ Information hiding isn’t only ADTs

◆ Algorithmic changes
– Monolithic to incremental algorithms

– Improvements in algorithms

◆ Replacement of hardware sensors
– Ex: better altitude sensors

◆ More?
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Central premise I

◆ We can effectively anticipate changes
– Unanticipated changes require changes to

interfaces or (more commonly) simultaneous
changes to multiple modules

◆ How accurate is this premise?
– We have no idea; there is essentially no

research about whether anticipated changes
happen (and v.v.)
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Central premise II

◆ Changing an implementation is the best change,
since it’s isolated

◆ This may not always be true
– Changing an implementation may not be simple, even

if localized

– Some global changes are straightforward
» Mechanically or systematically

– VanHilst and Notkin have an alternative
» Using parameterized classes with a deferred supertype

[ISOTAS, FSE, OOPSLA]
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Central premise III

◆ The semantics of the module must remain
unchanged when implementations are
replaced
– Specifically, the client should not care how the

interface is implemented by the module

◆ But what captures the semantics of the
module?
– The signature of the interface?  Performance?

What else?
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Central premise IV

◆ One implementation can satisfy multiple
clients
– Different clients of the same interface that need

different implementations would be counter to
the principle of information hiding

» Clients should not care about implementations, as
long as they satisfy the interface

– Next week: Kiczales’ work on open
implementations
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Central premise V

◆ It is implied that information hiding can be
recursively applied

◆ Is this true?

◆ If not, what are the consequences?
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Information hiding reprise

◆ It’s probably the most important design
technique we know

◆ It raised consciousness about change

◆ But one needs to evaluate the premises in
specific situations to determine the actual
benefits (well, the actual potential benefits
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Information Hiding and OO

◆ Are these the same? Not really
– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)

– Not necessarily based on change

◆ But they are obviously related (separating
interface from implementation, e.g.)

◆ What is the relationship between sub- and
super-classes?
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Layering [Parnas 79]

◆ A focus on information hiding modules
isn’t enough

◆ One may also consider abstract machines
– In support of program families

» Systems that have “so much in common that it pays
to study their common aspects before looking at the
aspects that differentiate them”

◆ Still focusing on anticipated change
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The uses relation

◆ A program A uses a program B if the
correctness of A depends on the presence of
a correct version of B

◆ Requires specification and implementation
of A and the specification of B

◆ Again, what is the “specification”?  The
interface?  Implied or informal semantics?
– Can uses be mechanically computed?
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uses vs. invokes

◆ These relations often but do not always
coincide

◆ Invocation without use: name service with
cached hints

◆ Use without invocation: examples?
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Parnas’ observation

◆ A non-hierarchical uses relation makes
subsetting difficult
– It also makes testing difficult

– (What about upcalls?)

◆ So, it is important to design the uses
relation
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Criteria for uses(A,B)

◆ A is essentially simpler because it uses B

◆ B is not substantially more complex
because it does not use A

◆ There is a useful subset containing B but
not A

◆ There is no useful subset containing A but
not B
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Layering in Dijkstra’s THE OS

◆ OK, those of you who took OS

◆ How was layering used, and how does it
relate to this work?
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Modules and layers interact?

◆ Information
hiding modules
and layers are
distinct concepts

◆ How and where
do they overlap
in a system?

Process ADT

Segment ADT

Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation
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Language support

◆ We have lots of language support for
information hiding modules
– C++ classes, Ada packages, etc.

◆ We have essentially no language support
for layering
– Operating systems provide support, primarily

for reasons of protection, not abstraction

– Big cost to pay for “just” abstraction
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Implicit invocation

◆ Components announce
events that other
components can
choose to respond to
– (Roughly, event-based

programming)
– The invokes relation

is the inverse of the
names relation

A

C

BInvokes on Event

Registers with

Registers with
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Implicit invocation mechanisms
◆ Field [Reiss], DEC FUSE, HP Softbench, etc.

– Components announce events as ASCII messages

– Components register interest using regular expressions

– Centralized multicast message server

◆ Smalltalk’s Model-View-Controller
– Registering with objects

– Separating UI views from internal models

– May request permission to change

◆ Others?  (COM’s model?)
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Not just indirection

◆ There is often confusion between implicit
invocation and indirect invocation
– Calling a virtual function is a good example of indirect

invocation
» The calling function doesn’t know the precise callee, but it

knows it is there and that there is only one

» Not true in general in implicit invocation

◆ An announcing component should not use any
responding components
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Mediators

◆ One style of using implicit invocation is the
use of mediators [Sullivan & Notkin]

◆ This approach combines events with entity-
relationship designs

◆ The intent is to ease the development and
evolution of integrated systems
– Management the coupling and isolate

behavioral relationships between components
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Experience

◆ I’ll show a small (academic) example

◆ However, a radiation treatment planning
(RTP) system (Prism) was designed and
built using this technique
– By a radiation oncologist [Kalet]

– A third generation RTP system

– In clinical use at UW and several other major
research hospitals
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Example

◆ Two set components, S1 and S2

◆ Ensure that the sets maintain the same
elements
– Can add or delete elements from either set

◆ What changes might you anticipate?
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ADT design

◆ To ensure that no client
changes one set but not
the other, encapsulate
both in a third component
– Promote hidden operations

◆ This outer component is
not there for information
hiding reasons

S1

insert element

remove element

S2

insert element

remove element

insert element

remove element
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Hardwiring

◆ Modify the implementations of the sets
◆ Clients simply call functions on either S1 or S2

S1

insert element

remove element

S2

insert element

remove element
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Mediators

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

◆ Create separate component to
represent relationship

◆ When either set changes, it
announces an event
– Events are defined in the interface,

like methods

◆ The mediator registers with and
responds to those events
– Must avoid circularity

◆ Neither set knows it is part of the
relationship
– Clients see S1 and S2
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Change: lazy equivalence

◆ What if we later decided to maintain the
equivalence of the sets lazily
– For instance, one set might be represented in a

hidden window, and there’s no reason to
maintain equivalence at all times
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ADT design

◆ Put the lazy bit inside
the encapsulating
component

◆ Expand the interface

◆ Where is the code that
re-establishes the
equivalence relation
when lazy toggles off?
– Requires iterator, too

S1

insert element

remove element

S2

insert element

remove element

S1.insert element

S1.remove element

S2.insert element

S2.remove element

toggle lazy

Lazy
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Hardwired design

◆ Handling the lazy change with the
hardwired result leads to a pretty ugly
(highly coupled) design
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Mediator: with lazy update

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy
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Another change: size of S1

◆ Suppose we now want to keep track of the
size of one of the sets (say, S1)

◆ Should be able to query the size
– In some variants, you can directly increment or

decrement the size directly
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ADT design

S1

insert element

remove element

S2

insert element

remove element

S1.insert element

S1.remove element

S2.insert element

S2.remove element
Count

Notkin (c) 1997 53

UW CSE

CSE584: Software
Engineering

Mediators

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

C

Count

Call
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Assessment

◆ For some classes of systems and changes,
mediator-based designs seem attractive

◆ Lots of outstanding issues
– Circularities in relations

– Ordering of mediators

– Distributed and concurrent variants

– New component models
» COM, etc.


