
CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 2 (April 8, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 2, Outline [approximate minutes]

◆ Administrivia (rescheduling) [5]

◆ Basic design concepts (coupling, cohesion, etc.) [20]

◆ Information hiding [20]

◆ Layered systems [20]

◆ Break [10]

◆ Roundtable:
– Design problems you face [30]

– How you do design [15]

◆ Implicit invocation & mediator-based design [30]

◆ Wrap-up and slop [20]

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Design: management of complexity

◆ We have to decompose large systems to be
able to build them

» The “modern” problem of composing systems from
pieces will be equally or more important

◆ For software, we have decomposition
techniques that are distinct from those used
in physical systems
– Very few constraints are imposed by the

material

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Design, design, design

◆ Design is a continuous activity in software
development
– High-level (architectural) design

» What pieces? How connected?

– Low-level design
» Should I use a hash table or binary search tree?

– Very-low-level design
» Variable naming, specific control constructs, etc.

Our
primary
focus

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

Which decomposition?

◆ How do we select a decomposition?
– We determine the desired criteria

– We select a decomposition (design) that will
achieve those criteria

◆ In theory, that is; but in practice, it’s hard to
– Determine the desired criteria with precision

– Tradeoff among various conflicting criteria

– Figure out if a design satisfies given criteria

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

Structure

◆ The focus of most design approaches is
structure

◆ What are the components and how are they
put together?

◆ Behavior is important, but less so than
structure (during architectural design)

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

So what happens?

◆ People often buy into a particular approach
or methodology
– Ex: functional decomposition, data decomposition,

object-oriented programming, information hiding,
layering, JSD, Hatley-Pirbai, etc.

◆ “Beware a methodologist who is more
interested in his methodology than in your
problem.” (Michael Jackson)

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Properties of design [Bergland]

◆ Cohesion

◆ Coupling

◆ Complexity

◆ Correctness

◆ Correspondence

◆ Makes designs “better”, one presumes

◆ Worth paying attention to

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Cohesion

◆ The reason that elements are found together
in a module
– Ex: coincidental, temporal, functional, …

◆ The details aren’t critical, but the intent is
useful

◆ During maintenance, one of the major
structural degradations is in cohesion
– Need for “logical remodularization”

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Coupling
◆ “Strength of interconnection between

modules”
◆ Hierarchies are touted as a wonderful

coupling structure, limiting
interconnections

◆ Coupling also degrades over time
– “I just need one function from that module…”
– Low coupling vs. no coupling

◆ Can’t live without coupling

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

It’s easy to...

◆ ..reduce coupling by calling a system a
single module

◆ …increase cohesion by calling a system a
single module

◆ No satisfactory measure of coupling
– Either across modules or across a system

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Complexity

◆ Well, yeah

◆ Bergland essentially said, “design for test”
under his discussion of complexity
– There may be a lesson here from model

checking in hardware
» Properties of a finite state space can often be

checked even where there is enormous complexity

◆ Again, no useful measures exist

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Correctness

◆ Well, yeah

◆ Even if you “prove” modules are correct,
composing the modules’ behaviors to
determine the system’s behavior is hard

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Correspondence

◆ “Problem-program mapping”

◆ The way in which the design is associated
with the requirements

◆ The idea is that the simpler the mapping,
the easier it will be to accommodate change
in the design when the requirements change

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Functional decomposition

◆ Divide-and-conquer based on functions
– input

compute
output

◆ More effective in the face of stable
requirements

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Question

◆ To what degree do you consider your
systems
– as having modules?

– as consisting of a set of files?

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

Physical structure
◆ Almost all the literature focuses on logical

structures in design

◆ But physical structure plays a big role in
practice
– Sharing

– Separating work assignments

– Degradation over time

◆ Why so little attention paid to this?

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Information hiding

◆ Information hiding [Parnas 1972] is perhaps
the most important intellectual tool
developed to support software design

◆ Provides the fundamental motivation for
abstract data type languages
– And thus a key idea in the object-oriented

world, too

◆ The conceptual basis is key (IMHO)

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

Basics of information hiding
◆ Modularize based on anticipated change

– Fundamentally different from Brooks’ approach in
OS/360 (see old and new MMM)

◆ Separate interfaces from implementations
– Implementations capture decisions likely to change

– Interfaces capture decisions unlikely to change

– Clients know only interface, not implementation

– Implementations know only interface, not clients

◆ Modules are also work assignments

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

Capturing anticipated changes

◆ The most common anticipated change is
“change of representation”
– Anticipating changing the representation of

data and associated functions (or just functions)

– A key notion behind abstract data types (ADTs)

◆ Ex:
– Cartesian vs. polar coordinates; stacks as linked

lists vs. arrays; packed vs. unpacked strings

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

Claim

◆ We less frequently change representations than we
used to
– We have significantly more knowledge about data

structure design than we did 25 years ago

– Memory is less often a problem than it was previously,
since it’s much less expensive

◆ Therefore, we should think twice about
anticipating that representations will change

– This is important, since we can’t
simultaneously anticipate all changes

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

Other anticipated changes?

◆ Information hiding isn’t only ADTs

◆ Algorithmic changes
– Monolithic to incremental algorithms

– Improvements in algorithms

◆ Replacement of hardware sensors
– Ex: better altitude sensors

◆ More?

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Central premise I

◆ We can effectively anticipate changes
– Unanticipated changes require changes to

interfaces or (more commonly) simultaneous
changes to multiple modules

◆ How accurate is this premise?
– We have no idea; there is essentially no

research about whether anticipated changes
happen (and v.v.)

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

Central premise II

◆ Changing an implementation is the best change,
since it’s isolated

◆ This may not always be true
– Changing an implementation may not be simple, even

if localized

– Some global changes are straightforward
» Mechanically or systematically

– VanHilst and Notkin have an alternative
» Using parameterized classes with a deferred supertype

[ISOTAS, FSE, OOPSLA]

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Central premise III

◆ The semantics of the module must remain
unchanged when implementations are
replaced
– Specifically, the client should not care how the

interface is implemented by the module

◆ But what captures the semantics of the
module?
– The signature of the interface? Performance?

What else?
Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

Central premise IV

◆ One implementation can satisfy multiple
clients
– Different clients of the same interface that need

different implementations would be counter to
the principle of information hiding

» Clients should not care about implementations, as
long as they satisfy the interface

– Next week: Kiczales’ work on open
implementations

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

Central premise V

◆ It is implied that information hiding can be
recursively applied

◆ Is this true?

◆ If not, what are the consequences?

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

Information hiding reprise

◆ It’s probably the most important design
technique we know

◆ It raised consciousness about change

◆ But one needs to evaluate the premises in
specific situations to determine the actual
benefits (well, the actual potential benefits

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

Information Hiding and OO

◆ Are these the same? Not really
– OO classes are chosen based on the domain of

the problem (in most OO analysis approaches)

– Not necessarily based on change

◆ But they are obviously related (separating
interface from implementation, e.g.)

◆ What is the relationship between sub- and
super-classes?

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Layering [Parnas 79]

◆ A focus on information hiding modules
isn’t enough

◆ One may also consider abstract machines
– In support of program families

» Systems that have “so much in common that it pays
to study their common aspects before looking at the
aspects that differentiate them”

◆ Still focusing on anticipated change

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

The uses relation

◆ A program A uses a program B if the
correctness of A depends on the presence of
a correct version of B

◆ Requires specification and implementation
of A and the specification of B

◆ Again, what is the “specification”? The
interface? Implied or informal semantics?
– Can uses be mechanically computed?

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

uses vs. invokes

◆ These relations often but do not always
coincide

◆ Invocation without use: name service with
cached hints

◆ Use without invocation: examples?

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Parnas’ observation

◆ A non-hierarchical uses relation makes
subsetting difficult
– It also makes testing difficult

– (What about upcalls?)

◆ So, it is important to design the uses
relation

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Criteria for uses(A,B)

◆ A is essentially simpler because it uses B

◆ B is not substantially more complex
because it does not use A

◆ There is a useful subset containing B but
not A

◆ There is no useful subset containing A but
not B

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

Layering in Dijkstra’s THE OS

◆ OK, those of you who took OS

◆ How was layering used, and how does it
relate to this work?

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

Modules and layers interact?

◆ Information
hiding modules
and layers are
distinct concepts

◆ How and where
do they overlap
in a system?

Process ADT

Segment ADT

Process Creation

Segment Mgmt.

Process Mgmt.

Segment Creation

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 7

Notkin (c) 1997 37

UW CSE

CSE584: Software
Engineering

Language support

◆ We have lots of language support for
information hiding modules
– C++ classes, Ada packages, etc.

◆ We have essentially no language support
for layering
– Operating systems provide support, primarily

for reasons of protection, not abstraction

– Big cost to pay for “just” abstraction

Notkin (c) 1997 38

UW CSE

CSE584: Software
Engineering

Implicit invocation

◆ Components announce
events that other
components can
choose to respond to
– (Roughly, event-based

programming)
– The invokes relation

is the inverse of the
names relation

A

C

BInvokes on Event

Registers with

Registers with

Notkin (c) 1997 39

UW CSE

CSE584: Software
Engineering

Implicit invocation mechanisms
◆ Field [Reiss], DEC FUSE, HP Softbench, etc.

– Components announce events as ASCII messages

– Components register interest using regular expressions

– Centralized multicast message server

◆ Smalltalk’s Model-View-Controller
– Registering with objects

– Separating UI views from internal models

– May request permission to change

◆ Others? (COM’s model?)

Notkin (c) 1997 40

UW CSE

CSE584: Software
Engineering

Not just indirection

◆ There is often confusion between implicit
invocation and indirect invocation
– Calling a virtual function is a good example of indirect

invocation
» The calling function doesn’t know the precise callee, but it

knows it is there and that there is only one

» Not true in general in implicit invocation

◆ An announcing component should not use any
responding components

Notkin (c) 1997 41

UW CSE

CSE584: Software
Engineering

Mediators

◆ One style of using implicit invocation is the
use of mediators [Sullivan & Notkin]

◆ This approach combines events with entity-
relationship designs

◆ The intent is to ease the development and
evolution of integrated systems
– Management the coupling and isolate

behavioral relationships between components

Notkin (c) 1997 42

UW CSE

CSE584: Software
Engineering

Experience

◆ I’ll show a small (academic) example

◆ However, a radiation treatment planning
(RTP) system (Prism) was designed and
built using this technique
– By a radiation oncologist [Kalet]

– A third generation RTP system

– In clinical use at UW and several other major
research hospitals

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 8

Notkin (c) 1997 43

UW CSE

CSE584: Software
Engineering

Example

◆ Two set components, S1 and S2

◆ Ensure that the sets maintain the same
elements
– Can add or delete elements from either set

◆ What changes might you anticipate?

Notkin (c) 1997 44

UW CSE

CSE584: Software
Engineering

ADT design

◆ To ensure that no client
changes one set but not
the other, encapsulate
both in a third component
– Promote hidden operations

◆ This outer component is
not there for information
hiding reasons

S1

insert element

remove element

S2

insert element

remove element

insert element

remove element

Notkin (c) 1997 45

UW CSE

CSE584: Software
Engineering

Hardwiring

◆ Modify the implementations of the sets
◆ Clients simply call functions on either S1 or S2

S1

insert element

remove element

S2

insert element

remove element

Notkin (c) 1997 46

UW CSE

CSE584: Software
Engineering

Mediators

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

◆ Create separate component to
represent relationship

◆ When either set changes, it
announces an event
– Events are defined in the interface,

like methods

◆ The mediator registers with and
responds to those events
– Must avoid circularity

◆ Neither set knows it is part of the
relationship
– Clients see S1 and S2

Notkin (c) 1997 47

UW CSE

CSE584: Software
Engineering

Change: lazy equivalence

◆ What if we later decided to maintain the
equivalence of the sets lazily
– For instance, one set might be represented in a

hidden window, and there’s no reason to
maintain equivalence at all times

Notkin (c) 1997 48

UW CSE

CSE584: Software
Engineering

ADT design

◆ Put the lazy bit inside
the encapsulating
component

◆ Expand the interface

◆ Where is the code that
re-establishes the
equivalence relation
when lazy toggles off?
– Requires iterator, too

S1

insert element

remove element

S2

insert element

remove element

S1.insert element

S1.remove element

S2.insert element

S2.remove element

toggle lazy

Lazy

CSE584 (Spring 1997) 4/8/97

Notkin (c) 1997 9

Notkin (c) 1997 49

UW CSE

CSE584: Software
Engineering

Hardwired design

◆ Handling the lazy change with the
hardwired result leads to a pretty ugly
(highly coupled) design

Notkin (c) 1997 50

UW CSE

CSE584: Software
Engineering

Mediator: with lazy update

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

Notkin (c) 1997 51

UW CSE

CSE584: Software
Engineering

Another change: size of S1

◆ Suppose we now want to keep track of the
size of one of the sets (say, S1)

◆ Should be able to query the size
– In some variants, you can directly increment or

decrement the size directly

Notkin (c) 1997 52

UW CSE

CSE584: Software
Engineering

ADT design

S1

insert element

remove element

S2

insert element

remove element

S1.insert element

S1.remove element

S2.insert element

S2.remove element
Count

Notkin (c) 1997 53

UW CSE

CSE584: Software
Engineering

Mediators

S1

insert element

remove element

S2

insert element

remove element

M

Register Register

Announce Announce

Call Call

inserted element

removed element

inserted element

removed element

toggle lazy

C

Count

Call

Notkin (c) 1997 54

UW CSE

CSE584: Software
Engineering

Assessment

◆ For some classes of systems and changes,
mediator-based designs seem attractive

◆ Lots of outstanding issues
– Circularities in relations

– Ordering of mediators

– Distributed and concurrent variants

– New component models
» COM, etc.

