CSE584 (Spring 1997)

CSE5S84: Software Engineering

Lecture 2 (April 8, 1997)

David Notkin

Dept. of Computer Science & Engineering
University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

—_—
CSES84: Software

Engineering Notkin (¢) 1997 1

Design: management of complexity

0 We have to decompose large systems to be
able to build them

» The “modern” problem of composing systems from
pieces will be equally or more important

0 For software, we have decomposition
techniques that are distinct from those used
in physical systems

— Very few constraints are imposed by the
material

Notkin (¢) 1997 3

Which decomposition?

0 How do we select a decomposition?
— We determine the desired criteria
— We select a decomposition (design) that will

achieve those criteria

0 In theory, that is; but in practice, it's hard t@
— Determine the desired criteria with precision
— Tradeoff among various conflicting criteria
— Figure out if a design satisfies given criteria

wese

Notkin (¢) 1997 5

Notkin (c) 1997

Lecture 2, Outline [approximate minutes]

Administrivia (rescheduling) [5]
Basic design concepts (coupling, cohesion, etc.) [20]
Information hiding [20]
Layered systems[20]
Break [10]
Roundtable:
— Design problems you face [30]
— How you do design [15]
Implicit invocation & mediator-based design [30]
Wrap-up and slop [20]

Oooooao

o

o

Notkin (c) 1997 2

Design, design, design

0 Designis acontinuous activity in software
development
— High-level (architectural) design
/ » What pieces? How connected?

o — Low-level design
primary » Should | use a hash table or binary search tree?

focus .
— Very-low-level design
» Variable naming, specific control constructs, etc.

Notkin (c) 1997 4

Structure

0 The focus of most design approachesis
structure

0 What are the components and how are they
put together?

0 Behavior isimportant, but less so than
structure (during architectural design)

Notkin (¢) 1997 6

4/8/97

CSE584 (Spring 1997)

So what happens?

0 People often buy into a particular approach
or methodology
— Ex: functional decomposition, data decomposition,
object-oriented programming, information hiding,
layering, JSD, Hatley-Pirbai, etc.
0 “Beware a methodologist who is more
interested in his methodology than in your
problem.” (Michael Jackson)

Notkin (¢) 1997 7

Properties of design [Bergland]

0 Cohesion

0 Coupling

0 Complexity

0 Correctness

0 Correspondence

0 Makes designs “better”, one presumes
0 Worth paying attention to

Notkin (c) 1997 8

Cohesion

0 The reason that elements are found together
inamodule
— Ex: coincidental, temporal, functional, ...

O The details aren't critical, but the intent is
useful

0 During maintenance, one of the major
structural degradations is in cohesion
— Need for “logical remodularization”

Notkin (¢) 1997 9

Coupling

0 “ Strength of interconnection between
modules”

0 Hierarchies are touted as a wonderful
coupling structure, limiting
interconnections

0 Coupling also degrades over time
— “I'just needone function from that module...”
— Low coupling vs. no coupling

o Can't live without coupling

Notkin (c) 1997 10

It's easy to...

O ..reduce coupling by calling asystem a
single module

O ...increase cohesion by calling a system a
single module

0 No satisfactory measure of coupling
— Either across modules or across a system

Notkin (¢) 1997 1

Complexity

Notkin (c) 1997

0 Well, yeah
0 Bergland essentially said, “design for test”
under his discussion of complexity

— There may be a lesson here from model
checking in hardware

» Properties of a finite state space can often be
checked even where there is enormous complexity]

0 Again, no useful measures exist

Notkin (¢) 1997 12

4/8/97

CSE584 (Spring 1997)

Correctness

0 Well, yeah

0 Even if you “prove” modules are correct,
composing the modules’ behaviors to
determine the system’s behavior is hard

Notkin (¢) 1997 13

Correspondence

0 “Problem-program mapping”

0 The way in which the design is associated
with the requirements

0 The idea is that the simpler the mapping,
the easier it will be to accommodate chande
in the design when the requirements change

Notkin (c) 1997 1

Functional decomposition

0 Divide-and-conquer based on functions
—input
compute
output
0 More effective in the face of stable
requirements

Notkin (¢) 1997 15

Question

0 To what degree do you consider your
systems
— as having modules?
— as consisting of a set of files?

Notkin (c) 1997 16

Physical structure

0 Almost al the literature focuses on logical
structuresin design

0 But physical structure playsabig rolein
practice
— Sharing
— Separating work assignments
— Degradation over time

0 Why so little attention paid to this?

Notkin (¢) 1997 17

Information hiding

Notkin (c) 1997

0 Information hiding [Parnas 1972] is perhaps
the most important intellectual tool
developed to support software design

0 Provides the fundamental motivation for
abstract data type languages

— And thus a key idea in the object-oriented
world, too

0 The conceptual basisiskey (IMHO)

Notkin (¢) 1997 18

4/8/97

CSE584 (Spring 1997)

Basics of information hiding

0 Modularize based on anticipated change
— Fundamentally different from Brooks’ approach in
0S/360 (see old and new MMM)
0 Separate interfaces from implementations
— Implementations capture decisions likely to change
— Interfaces capture decisions unlikely to change
— Clients know only interface, not implementation
— Implementations know only interface, not clients
0 Modules are also work assignments

Notkin (¢) 1997 19

Capturing anticipated changes

0 The most common anticipated changeis
“change of representation”
— Anticipating changing the representation of
data and associated functions (or just function|
— A key notion behind abstract data typeBTs)
0 Ex:

— Cartesian vs. polar coordinates; stacks as link|
lists vs. arrays; packed vs. unpacked strings

Notkin (c) 1997 20

ed

Clam

0 We less frequently change representations than
used to

— We have significantly more knowledge about data
structure design than we did 25 years ago

— Memory is less often a problem than it was previousl
since it's much less expensive

0 Therefore, we should think twice about
anticipating that representations will change

— This is important, since we can’'t
simultaneously anticipate all changes

Notkin (¢) 1997 21

Other anticipated changes?

0 Information hiding isn’'t only ADTs
o Algorithmic changes
— Monolithic to incremental algorithms
— Improvements in algorithms
0 Replacement of hardware sensors
— Ex: better altitude sensors
0 More?

Notkin (c) 1997 2

Central premise

0 We can effectively anticipate changes
— Unanticipated changes require changes to
interfaces or (more commonly) simultaneous
changes to multiple modules
0 How accurate is this premise?
— We have no idea; there is essentially no
research about whether anticipated changes
happen (and v.v.)

Notkin (¢) 1997 23

Central premise |

Notkin (c) 1997

0 Changing an implementation is the best change
since it's isolated
0 This may not always be true
— Changing an implementation may not be simple, even
if localized
— Some global changes are straightforward
» Mechanically or systematically
— VanHilst and Notkin have an alternative

» Using parameterized classes with a deferred supertype
[ISOTAS, FSE, OOPSLA]

Notkin (¢) 1997 2

4/8/97

CSE584 (Spring 1997)

Centra premiselll

0 The semantics of the module must remain
unchanged when implementations are
replaced

— Specifically, the client should not care how thq
interface is implemented by the module

0 But what captures the semantics of the
module?

— The signature of the interface? Performance?
What else?

Notkin (¢) 1997 2

Central premiseV

0 Itisimplied that information hiding can be
recursively applied

0 Isthistrue?
0 If not, what are the consequences?

Notkin (¢) 1997 27

Information Hiding and OO

0 Are these the same? Not really

— OO classes are chosen based on the domain pf
the problem (in most OO analysis approaches|

— Not necessarily based on change
0 But they are obviously related (separating
interface from implementation, e.g.)

0 What is the relationship between sub- and
super-classes?

Notkin (¢) 1997 2

Notkin (c) 1997

Central premise |V

0 One implementation can satisfy multiple
clients
— Different clients of the same interface that ne¢
different implementations would be counter to
the principle of information hiding

» Clients should not care about implementations, as
long as they satisfy the interface

— Next week: Kiczales’ work on open
implementations

Notkin (c) 1997 2%

Information hiding reprise

0 It's probably the most important design
technigue we know

O It raised consciousness about change

0 But one needs to evaluate the premises in
specific situations to determine the actual
benefits (well, the actual potential benefits

Notkin (c) 1997 28

Layering [Parnas 79]

o A focus on information hiding modules
isn’'t enough
0 One may also consider abstract machines

— In support of program families

» Systems that have “so much in common that it pa!
to study their common aspects before looking at th
aspects that differentiate them”

o Still focusing on anticipated change

Notkin (¢) 1997 30

e

4/8/97

CSE584 (Spring 1997)

Theuses relation

0 A program A uses a program B if the
correctness of A depends on the presence of
acorrect version of B

0 Requires specification and implementation
of A and the specification of B

0 Again, what is the “specification”? The
interface? Implied or informal semantics?

— Canuses be mechanically computed?

Notkin (¢) 1997 31

uses vs.i nvokes

0 These relations often but do not always
coincide

O Invocation without use: name service with
cached hints

0 Use without invocation: examples?

Notkin (c) 1997 2

Parnas’ observation

0 A non-hierarchical uses relation makes
subsetting difficult
— It also makes testing difficult
— (What about upcalls?)

0 So, it isimportant to design theuses
relation

Notkin (¢) 1997 33

Criteriafor uses(A, B)

0 Alisessentially simpler because it uses B

0 Bisnot substantially more complex
becauseit does not use A

0 Thereisauseful subset containing B but
not A

0 Thereis no useful subset containing A but
not B

Notkin (c) 1997 ")

Layering in Dijkstra’s THE OS

0 OK, those of you who took OS

0 How was layering used, and how does it
relate to thiswork?

Notkin (¢) 1997 35

Modules and layers interact?

0 Ir_1fc_)rmati on
hiding modules
and layersare

distinct concepts
0 How and where

do they overlap

inasystem? | roesces

Process Mgt

Notkin (¢) 1997 36

Notkin (c) 1997

4/8/97

CSE584 (Spring 1997)

L anguage support

0 We have lots of language support for
information hiding modules
— C++ classes, Ada packages, etc.
0 We have essentially no language support
for layering
— Operating systems provide support, primarily
for reasons of protection, not abstraction
— Big cost to pay for “just” abstraction

Notkin (¢) 1997 37

Implicit invocation mechanisms

0 Fidd [reiss], DEC FUSE, HP Softbench, etc.
— Components announce events as ASCII messages
— Components register interest using regular expressio
— Centralized multicast message server

0 Smalltalk’s Model-View-Controller
— Registering with objects
— Separating Ul views from internal models
— May request permission to change

0 Others? (COM's model?)

wn

Notkin (¢) 1997 39

Mediators

0 One style of using implicit invocation isthe
use of mediators [Sullivan & Notkin]

0 This approach combines events with entity-
relationship designs

0 Theintent is to ease the devel opment and
evolution of integrated systems

— Management the coupling and isolate
behavioral relationships between components

Notkin (¢) 1997 4

Notkin (c) 1997

Implicit invocation

0 Components announce
events that other
components can

choose to respondto | Pk svem

— (Roughly, event-based
programming) -
— Thei nvokes relation

is the inverse of the e Registers with -
names relation

e REQISHENS With-—-------xy

Notkin (c) 1997 38

Not just indirection

0 Thereis often confusion between implicit
invocation and indirect invocation

— Calling a virtual function is a good example of indirect
invocation

» The calling function doesn’t know the precise callee, but it
knows it is there and that there is only one
» Not true in general in implicit invocation

0 An announcing component should not use any
responding components

Notkin (c) 1997 a0

Experience

o I'l show a small (academic) example

0 However, a radiation treatment planning
(RTP) system (Prism) was designed and
built using this technique
— By a radiation oncologigtaet
— Athird generation RTP system

— In clinical use at UW and several other major
research hospitals

Notkin (¢) 1997 42

CSE584 (Spring 1997) 4/8/97

Example ADT design
0 Two set components, S1 and S2 0 To ensure that no client
0 Ensure that the sets maintain the same changes one set but not e
o t the other, encapsulate [deren
emen's both in a third component
— Can add or delete elements from either set — Promote hidden operationg |mmossenes | fieno sener
0 This outer component is * *
0 What changes might you anticipate? not there for information
hiding reasons
Notkin (c) 1997 43 Notkin (c) 1997 44
Hardwiring Mediators
0 Create separate component to
represent relationship

O When either set changes, it
announces an event
— Events are defined in the interface,
like methods
0 The mediator registers with and
responds to those events
— Must avoid circularity st s2
0 Modify the implementations of the sets O Neither set knowsit is part of the

H ; : ; relationship
0 Clients simply call functions on either S1 or S2 Clionts se1 ands2

Register Register [

Notkin (c) 1997 45 Notkin (c) 1997 46
Change: lazy equivalence ADT design
0 What if we later decided to maintain the 0 Put the lazy bit_ inside
equivalence of the sets lazily the encapsulating
— For instance, one set might be represented infa component S m—
hidden window, and there’s no reason to 0 Expand the interface | s | (.
maintain equivalence at all times 0 Where is the code tha o N
re-establishes the
equivalence relation

when lazy toggles off?
— Requires iterator, too

uwese uwese
= Notkin (c) 1997 47 Notkin (c) 1997 48

Notkin (c) 1997 8

CSE584 (Spring 1997) 4/8/97

Hardwired design Mediator: with lazy update
0 Handling the lazy change with the [E—
hardwired result leadsto a pretty ugly
(highly coupled) design
ramove semert | R
inserted element inserted element
removed element removed element
Notkin (c) 1997 49 Notkin (c) 1997 50
Another change: size of S1 ADT design
o SUppO% we now Want tO k%p tl’aCk Of the Sl.insert element ‘SZ.inserl element ‘

. Sl.remove element | S2.remove element
size of one of the sets (say, S1) | ‘
u ShOUI d be abl eto query the Size insert element insert element

— In some variants, you can directly increment oy remove element remove element
decrement the size directly

S1 S2
Notkin (c) 1997 51 Notkin (c) 1997 52
Mediators Assessment
— o0 For some classes of systems and changes,
mediator-based designs seem attractive
T' T‘ 0 Lots of outstanding issues
T e I N e — Circularities in relations
‘ remove element remove element _ Orderlng Of med|at0|'s
o] * i — Distributed and concurrent variants
inserted element inserted element
removed element removed element — New component models
» COM, etc.
Notkin (c) 1997 53 Notkin (c) 1997 54

Notkin (c) 1997 9

