
CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 3 (April 15, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 3, Outline [approximate minutes]

◆ Administrivia (rescheduling) [5]

◆ Software architecture [30]

◆ Design patterns [40]

◆ Break [10]

◆ Roundtable [30]
– Possible topics include

» Design disasters you’ve seen upfront and personal

» Design issues and approaches I haven’t addressed

◆ Open implementation [40]

◆ Wrap-up and slop [20]

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Modern issues in design

◆ Software architecture
– Families of designs

◆ Design patterns
– Common patterns in object-oriented

programming

◆ Open implementations
– Overcoming shortcomings of black-box design

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Software architecture

◆ An area of significant attention in the last
five years
– Garlan and Shaw

– Perry and Wolf

◆ There are two basic goals
– Capturing, cataloguing, and exploiting

experience in software designs

– Allowing reasoning on classes of designs

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

An aside: compilers I

◆ The first compilers had ad hoc designs

◆ Over time, as a number of compilers were
built, the designs became more structured
– Experience yielded benefits

» Compiler phases, symbol table, etc.

– Plenty of theoretical advances
» Finite state machines, parsing, ...

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

An aside: compilers II

◆ Compilers are perhaps the best example of
shared experience in design
– Lots of tools that capture common aspects

– Undergraduate courses build compilers

– Most compilers look pretty similar in structure

◆ We still don’t fully generate compilers



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Other domains?

◆ Which other domains are as successful in
this regard as compilers?

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Back to software architecture

◆ The hope is that by studying our experiences with
a variety of systems, we can gain leverage as we
did with compilers

◆ Capture the strengths and weaknesses of various
software structures
– Perhaps enabling designers to select appropriate

architectures more effectively

◆ Benefit from high-level study of software
structure

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Components and connectors

◆ Software architectures are composed of
components and connectors
– Components define the basic computations

comprising the system
» Abstract data types, filters, etc.

– Connectors define the interconnections
between components
» Procedure call, event announcement, etc.

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Architectural style

◆ Defines the vocabulary of components and
connectors for a family (style)

◆ Constraints on the elements and their combination
– Topological constraints (no cycles, register/announce

relationships, etc.)

– Execution constraints (timing, etc.)

◆ By choosing a style, one gets all the known
properties of that style
– For any given architecture in that style

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Not just boxes and arrows

◆ Consider pipes & filters
– Pipes must compute local transformations

– Filters must not share state with other filters

– There must be no cycles

◆ If these constraints are not satisfied, it’s not
a pipe & filter system

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Benefits

◆ In the pipes & filters example, a benefit of
the constraints is that deadlock will not
arise
– Again, in any instantiation of the style that

satisfies the constraints

◆ One can think of the constraints as
obligations on the designer
– Some properties can be automatically checked



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Specializations

◆ Architectural styles can have
specializations
– A pipeline might further constrain an

architecture to a linear sequence of filters
connected by pipes

– A pipeline would have all properties that the
pipe & filter style has, plus more

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Well, do they help?

◆ I like the basic software architecture research as
an intellectual tool
– The work is helping us better understand classes of

software structures that have shown themselves as
useful

– Simply improving our shared terminology is a benefit

◆ It may not be fully distinct from Parnas’s families
of systems, but enough to benefit

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Open questions I

◆ What properties can be analyzed?
– Wright [Allen & Garlan]

» Reason about architectures in terms of protocols,
using a CSP-like language

» Roughly, type-checking of architectural styles

– Of these, which are sufficiently important to
justify the investment
» The investment is high, but in theory amortized

– What about across heterogeneous
architectures?

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Open questions II

◆ How does one go from an architectural
style to an architecture?

◆ How does one produce new architectural
styles?

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

Open questions III

◆ What is the relationship between
architectural and implementation?
– Does architectural information aid in going

from design to implementation?

– What happens as the implementation evolves in
ways inconsistent with the architecture?
» Which properties still hold, and how do we know

this?

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Experience

◆ It’s a hot area, with lots of companies
paying attention

◆ Allen & Garlan recently reported on a case
study in applying architectural modelling to
the AEGIS Weapons System
– Used formalism to help “expose and resolve

some of the architectural problems that arose in
implementing the system”



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

AEGIS Prototype Architecture

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

On-going research

◆ Environments to support the design of
architectural styles and architectures

◆ Architectural design languages (ADLs)

◆ Formal models of architectures

◆ Architectural case studies

◆ Use of informal architectures

◆ ...

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

Design patterns

◆ Design patterns are idioms that are intended
to be “simple and elegant solutions to
specific problems in object-oriented
software design.”

◆ They are drawn from actual software
systems

◆ They are intended to be language-
independent

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

A weak analogy

◆ I view high-level control structures in
programming languages as quite the same
– For example, a while loop is an idiomatic collection of

machine instructions

◆ Knuth’s 1974 article (“Structured Programming
with go to Statements”) shows that this is not a
language issue alone

◆ Patterns are a collection of “mini-architectures”

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Example: flyweight [Gamma et al.]

◆ Intent
– Use sharing to support

many fine-grained
objects efficiently

– Can’t usually afford to
have small elements
(like characters) be
full-fledged objects

◆ Separate logical model
from physical model

column

rowrowrow

a tnerapp

column

rowrowrow

a tnerapp

a mlkjihgfedcb

n zyxwvutsrqpo

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

Flyweight structure

GetFlyweight(key)

FlyweightFactory

Operation(extrinsicState)

Flyweight

flyweights

Client

Operation(extrinsicState)

intrinsicState

ConcreteFlyweight

Operation(extrinsicState)

allState

UnsharedConcreteFlyweight



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Categories of patterns

◆ Creational

◆ Structural

◆ Behavioral

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

An enlightening experience

◆ At a workshop a year or two ago, I had an
experience with two of the Gang of Four

◆ They sat down with Griswold and me to show
how to use design patterns to (re)design a
software architecture we had published

◆ The rate of communication between these two
was unbelievable
– And much of it was understandable to us without

training (good sign for a learning curve)

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

This is the real thing

◆ Design patterns are not a silver bullet

◆ But they are impressive, important and worthy of
attention

◆ I think that (slowly?) some of the patterns will
become part and parcel of designers’ vocabularies
– This will improve communication and over time

improve the designs we produce

◆ The relatively disciplined structure of the pattern
descriptions may be a plus

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

The future

◆ I’m somewhat worried that “second wave” R&D
will hurt more than help

◆ How do patterns interact?

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

Patterns resources

◆ Patterns Home Page
– http://st-www.cs.uiuc.edu/users/patterns/patterns.html

◆ Portland Pattern Repository
– http://c2.com/ppr/index.html

◆ FAQ
– http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

◆ Gang of Four book
– Design Patterns: Elements of Reusable Object-Oriented Software.

Gamma et. al.

◆ OO journals, OOPSLA, etc.

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Open implementation

◆ Last week in discussing information hiding
I listed some central premises

◆ Two important ones are especially
questionable

◆ Kiczales et al. have studied this question
carefully, leading to some work generally
called Open Implementation
– http://www.parc.xerox.com/spl/projects/oi/



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

Central premises III and IV

◆ The semantics of the module must remain
unchanged when implementations are replaced
– Specifically, the client should not care how the

interface is implemented by the module

◆ One implementation can satisfy multiple clients
– Different clients of the same interface that need

different implementations would be counter to the
principle of information hiding

» Clients should not care about implementations, as long as they
satisfy the interface

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

These are often false

◆ What defines the semantics of the interface?
– Much is not (cannot?) be defined, but is inferred by the

client

◆ Once properties are inferred, clients start to
assume that they are true

◆ Multiple clients may infer different properties
– So changing those properties consistently may be

impossible

◆ Client do, in practice, care about (aspects of) the
implementation

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Examples

◆ The flyweight pattern
example points out a few
of these issues

◆ Logically, any
implementation of the
interface is OK
– But not all implementations

are equally adequate for all
clients

◆ The Kiczales spreadsheet
example

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Two approaches often taken

◆ Programmers often respond to these problems in
one of two ways
– Write own windowing system

– Clever coding tricks
» Paging example

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

The experts say

◆ “I found a large number of
programs perform poorly
because of the language’s
tendency to hide `what is
going on’ with the
misguided intention of
`not bothering the
programmer with details’”
– N. Wirth, 1974

◆ “An interface should
capture the minimum
essentials of an
abstraction.”

◆ When an interface
undertakes to do too
much, the result is a large,
slow complicated
implementation.”
– B. Lampson, 1984

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

The OI solution

◆ Define two interfaces
– The base interface, which

provides the essential
semantics

– The meta-interface, which
is used to customize aspects
of the implementation of
the base

◆ Based on experience
– Common Lisp Meta-Object

Protocol (CLOS MOP)

– Reflective computing



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 7

Notkin (c) 1997 37

UW CSE

CSE584: Software
Engineering

Allows the client to

◆ Use the module’s primary functionality
alone when the default implementation is
adequate

◆ Control the module’s implementation-
strategy decisions when necessary

◆ Deal with functionality and implementation
strategy decisions in largely separate ways

Notkin (c) 1997 38

UW CSE

CSE584: Software
Engineering

Design issues: OI claims

◆ The base interface design requires similar
techniques to current interface design

◆ The design of the meta-interface and of the
coupling of the meta- and base interface is
more complicated
– Requires expertise in the definition and uses of

the components

Notkin (c) 1997 39

UW CSE

CSE584: Software
Engineering

Design issues: meta-interface

◆ Scope control
– Are controls over the implementation for

instances, classes, other?

◆ Conceptual separation & incrementality
– Can the client of the meta-interface understand

and use just parts of it?

◆ Robustness
– Are bugs in a client’s meta-program limited in

effect?
Notkin (c) 1997 40

UW CSE

CSE584: Software
Engineering

It’s not an entirely new idea

◆ Compiler pragmas

◆ Multiple implementations of an interface
– With client choice [Hermes]

◆ User-directed parallelization
◆ Unix madvise

– Influence page replacement

◆ Many more

Notkin (c) 1997 41

UW CSE

CSE584: Software
Engineering

Ongoing

◆ Examples

◆ Design guidelines

◆ Analysis techniques

Notkin (c) 1997 42

UW CSE

CSE584: Software
Engineering

Frameworks

◆ Frameworks are another design buzzword

◆ One way to think about them is as upside-down
layers
– That is, layered systems allow us to construct families

of systems by sharing lower layers

– Frameworks allow us to construct families of systems
by sharing upper “layers”

◆ Instantiate and specialize provided classes
– “More” than patterns



CSE584 (Spring 1997) 4/15/97

Notkin (c) 1997 8

Notkin (c) 1997 43

UW CSE

CSE584: Software
Engineering

More frameworks

◆ User interface frameworks (MVC, HotDraw, …)

◆ Distributed systems

◆ Network protocols

◆ More information
– http://www.ide.hk-r.se/frameworks/frameworks.html

– http://iamwww.unibe.ch/~scg/./Research/iscf.html


