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Lecture 6, Outline [approximate minutes]

◆ Requirement specification terminology [30]

◆ Informal approaches to requirements specification [5]

◆ Formal methods overview [20]

◆ Break [10]

◆ Basic Z example (telephone) [45]

◆ Very basic Statecharts example [15]

◆ Writing a spec (in small groups) [30]
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Requirements specification

◆ Defines the software to be built
◆ Historically written in natural language

– Natural language is inherently ambiguous
– Not always especially concise

◆ There are a number of approaches to
overcome problems with natural language
requirements specification definition
– Much of the next part of lecture is due to M.

Jackson
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Ambiguity

◆ “Hard hats must be
worn before entering
the construction area.”
– At the UW EE/CSE

building construction
site entrance

◆ Michael Jackson’s
favorite example
– At the foot of an

escalator

Shoes Must
Be Worn

Dogs Must
Be Carried
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Shoes and dogs

◆ Your interpretation goes here
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Optative vs. indicative moods

◆ Jackson observes that specifications often
improperly (or confusingly, at least) mix
two forms of statements

◆ The indicative mood states a fact
∀ x • (OnEscalator(x) ⇒
         ∃ y • (PairOfShoes(y) ∧ IsWearing(x,y))

◆ The optative mood states a wish
– What happens if someone not wearing shoes

gets on the escalator?
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Optative and indicative

◆ Indicative properties are those that are
invariantly true regardless of the program
– In essence, they describe the operating

environment for a program

◆ Optative properties are those that you want
to achieve
– In essence, these are the requirements
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Optative or indicative?

◆ Specifying the minimal separation distance
between airplanes in an air traffic control
system
– If you make it indicative (that is, state it as an

invariant) then you can’t describe the
requirements, which are intended to ensure that
this separation holds
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Jackson examples: which mood?
(a) The lift never goes from the nth to the n+2nd floor without passing the

n+1st floor
(b) The lift never passes a floor for which the floor selection light inside

the life is illuminated without stooped at that floor
(c) If the motor polarity is set to up and the motor switch setting is

changed from off to on, the lift starts to rise without 250 msecs.
(d) If the upwards arrow indicator at a floor is not illuminated when the

lift stops at the floor, it will not leave in the upwards direction.
(e) The doors are never open at a floor unless the lift is stationary at that

floor.
(f) When the lift arrives at a floor, the lift-present sensor at the floor is set

to on.
(g) If an up call button at a floor is pressed when the corresponding light

is off, the light comes on and remains on until the call is serviced by
the lift stopping at that floor and leaving in the upwards direction
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Principle of Uniform Mood

◆ Indicative properties and optative properties
should be entirely separated in a
specification document
– Reduces confusion of both the authors and the

readers

◆ If the software works right, both sets of
properties will hold as facts
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Defining terms

◆ A key aspect of ambiguity in requirements
documents arises when terms aren’t well-
defined
– When is something a “pair of shoes”?

– When is a pair of shoes “being worn”?

– What is a “dog”?
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“dog” (noun)

◆ OED has 15 definitions (11K words in full definition)

◆ Webster’s 11 definitions include
» a highly variable domestic mammal (Canis

familiaris) closely related to the common wolf
» a worthless person
» any of various usu. simple mechanical devices for

holding, gripping, or fastening that consist of a
spike, rod, or bar

» FEET
» an investment ... not worth its price
» an unattractive girl or woman
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“shoe” (noun, Webster’s)

◆ Six definitions including
» an outer covering for the human foot usu. made of

leather with a thick or stiff sole and an attached heel

» another's place, function, or viewpoint

» a device that retards, stops, or controls the motion of
an object

» a device (as a clip or track) on a camera that permits
attachment of accessory items

» a dealing box designed to hold several decks of
playing cards
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Designation

◆ A designation
defines a term
through a
recognition rule

◆ Allows one to
decide whether
a phenomenon
satisfies the
designation

x is a human being Human(x)

x is male Male(x)

x is female Female(x)

x is the genetic

  mother of y Mother(x,y)

x is the genetic

  father of y Father(x,y)
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Using designations

◆ It’s important to give enough definition to
make sure all agree on the meaning
– This takes some leap of faith, especially in

domains in which people have little shared
experience

◆ Allows refutable statements to be made
about the requirements

∀ x,y • ((Human(x) ∧ Mother(x,y)) ⇒
                (Female(x) ∧ Human(y)))
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Refutable descriptions

◆ Having refutable descriptions is useful

◆ The primary reason is that such a
description can be used to determine
whether a program satisfies a requirement

◆ Another is that it may help you think more
clearly about what you are saying
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More designations?

◆ Usually you end up having more terms you
need to define

◆ Should you designate them?
– x is the genetic brother of y  Brother(x,y)

◆ An alternative is to define them in terms of
existing designations
– Brother(x,y)  ≅

    Male(x)  ∧ ∃ f  • (Father(f,x)  ∧ Father(f,y)  ∧
    ∃ m • (Mother(m,x)  ∧ Mother(m,y))  ∧ x ≠ y
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Definitions

◆ Definitions define terms in terms of
existing designations
– They are macros, in essence

◆ They can simplify what you can talk about
– But they don’t fundamentally change what you

can talk about

◆ Definitions can’t be right or wrong
– Just well-formed (or not) and useful (or not)
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Designations in Z

◆ The Z specification language defines atomic
elements
– [Book, Person]

◆ This indicates that there are Books and there are
Persons
– Books are always Books; Persons are always Persons

– Nothing can be both a Book and a Person

◆ The associated natural language describes the
actual designations
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More on designations

◆ Writing designations can help clarify your
thinking
– c is a customer Customer(c)

– e is an employee Employee(e)

◆ Is the time period material?
– c is a customer in v Customer(c,v)

– e is an employee in v Employee(e,v)

◆ Can an employee be a customer?
¬∃ v,x • (Customer(x,v) ∧
         Employee(x,v))
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Which to use?

◆ The distinction may also help clarify
– m is a member during v Member(m,v)

– m enrolls at time e Enroll(m,e)

– m resigns at time e Resign(m,e)

◆ This approach may lead to confusion
– Must you be a member to enroll?

– Are you a member after you resign?

◆ Instead define membership in terms of the
enrolls and resigns designations
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Term limits

◆ None of this is magic

◆ The distinction in terminology between
designation and definition is just another
way to help you think more clearly when
writing specifications
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Informal approaches

◆ Running plain text requirements
specifications are increasingly less common

◆ There are a number of approaches between
this and formal specifications that give
varying degrees of leverage
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“Will” and “Shall”

◆ Some government groups write
requirements with specified meanings for
“will” and “shall” and “may” and such
– “shall” is a requirement

– “may” is an optional requirement

– “will” describes something not under control of
the system

◆ Not always too clear
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Structured requirements

◆ I
– I.A

» I.A.ii
◆ I.A.ii.3

– I.A.ii.3.q
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Formal methods

◆ The original use of formalism in software
engineering was for proving the
equivalence between a specification and an
implementation
– This had a number of problems

◆ But there has been a resurgence of interest
in formal methods
– Mostly due to potential usefulness in

specification
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Potential benefits

◆ Increased clarity

◆ Ability to check specifications for internal
consistency

◆ Ability to prove properties about the
specification

◆ Not always worth the effort
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Styles of formal specifications

◆ Model-oriented (e.g. Z, VDM)

◆ Algebraic (e.g. OBJ, Larch)

◆ Process Model (e.g. CCS, CSP)

◆ Finite State-based (e.g. Statecharts, RSML)

◆ Logical, constructive, multi-paradigm,
broad spectrum, ...
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Model oriented

◆ Model a system by describing its state
together with operations over that state
– An operation is a function that maps a value of

the state together with values of parameters to
the operation onto a new state value

◆ A model oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software
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Algebraic specifications

◆ Represent structures as algebras
– Represent results as compositions of

operations, not as explicit state

– Closely related to ADTs

◆ Algebraic methods tend to provide less
implementation bias than some other
methods
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Process based specifications

◆ For describing concurrent systems

◆ Also algebraic in nature, but focus on
processes that can be composed over a
variety of operators (such as run in parallel)
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Finite state based specifications

◆ Represent system as a finite state machine

◆ Transitions fired by external (and maybe
internal) events

◆ Often useful in describing aspects of
embedded systems
– Inputs from sensors, outputs to actuators
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Examples we’ll look at

◆ Model based specs

◆ Algebraic specifications

◆ Hierarchical state specifications
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Telephone features in Z

◆ Due to Mataga and Zave
– Information and Software Technology, 1995

◆ Telephone interface specification
– How features are invoked by the user

◆ Connections specification
– Consequences of interactions such as call

processing
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Background

◆ Externally observable behavior of a
telephone switch
– Not the details of switching

◆ Multiplexing telephones
– Can handle multiple calls (but talk on only one

at a time)

◆ Features on top of POTS (Plain Old
Telephone Service)
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More background
◆ Each physical phone can be thought of as

having multiple virtual telephones (VTs)
– Each VT has a “call appearance” with a button

and indicator lights

◆ The VTs on a phone can have different
directory numbers (DNs)
– A single DN may appear on multiple phones

◆ Simple correspondences with phones, calls
and DNs no longer exist
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Features

◆ Bridging
– Picking up a VT that shares a DN with a VT

that is already actively involved in a call

◆ Hold
– Suspend call, switch to another VT

◆ Speed calling

◆ Conferencing
– Merge two calls
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Features

◆ Transfer
– Like conference, but drop the original party

◆ Drop
– Drops most recent party on conference call

◆ Call pickup
– Answer a call ringing on somebody else’s

telephone
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Features

◆ Call forwarding All
– All calls to a DN are forwarded

◆ Call forwarding Busy
– Forward a call if no VT for a DN is available

◆ Call Forwarding Don’t Answer
– Forward if a ringing phone is not answered

within a certain amount of time
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Appropriate level?

◆ A specification must choose a level that is
appropriate

◆ In this case, a number of issues are not
addressed in this specification
– Translating dialed digits into DNs

– Any analog or digital processing of sound

– Etc.
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Basic model

◆ Each telephone has a set of VTs

◆ Each VT has its own DN

◆ Each VT has a state that describes its call
processing status
– idle, dialing, ringing, etc.

◆ A call associates VTs
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Physical view
larry

l1 9999

l3 9999

l2 9999

curley

c1 7777

c3 7777

c2 7777

eric

e1 6666

e3 8888

e2 7777

moe

m1 8888

m3 9999

m2 8888

talking

talking

ringing

reserved
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Logical alternative

◆ A logical alternative, at this level of
abstraction, is to specify clusters of all VTs
with the same DN
– This can clean up the specification of a call,

since it can be represented as a link between
clusters (not between VTs or DNs)
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Clusters

ringing

m1 ringing

* ringback

e3 ringing

established

c1 talking

e2 reserved

established

l1 talking

m3 talking
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A scenario

◆ Larry (VT l1) calls DN 777

◆ This rings VT c1 and VT e2
– curley answers at c1

◆ Later moe joins the call by bridging
– By picking up m3, which was reserved by the 1st call

◆ curley on VT c2 calls 8888
– Ringing m1 and e3 (and a tone generator)

– While ringing, curley invokes a conference,
merging the calls and dropping c2
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Empty cluster…and

◆ It’s there to preserve the topology for a later
Drop

◆ The point (in the lecture) isn’t the details,
but rather the complexity even in this
relatively small example
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Z schemas

◆ On the white board
– [See the paper if you didn’t come to class and

you want to see them]
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Statecharts

◆ Statecharts is a visual specification
language for defining finite state machines

◆ Perhaps the central feature is that the state
description is hierarchical
– This allows much smaller descriptions for what

may be very large state machines


