
CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 6 (May 6, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 6, Outline [approximate minutes]

◆ Requirement specification terminology [30]

◆ Informal approaches to requirements specification [5]

◆ Formal methods overview [20]

◆ Break [10]

◆ Basic Z example (telephone) [45]

◆ Very basic Statecharts example [15]

◆ Writing a spec (in small groups) [30]

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Requirements specification

◆ Defines the software to be built
◆ Historically written in natural language

– Natural language is inherently ambiguous
– Not always especially concise

◆ There are a number of approaches to
overcome problems with natural language
requirements specification definition
– Much of the next part of lecture is due to M.

Jackson

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Ambiguity

◆ “Hard hats must be
worn before entering
the construction area.”
– At the UW EE/CSE

building construction
site entrance

◆ Michael Jackson’s
favorite example
– At the foot of an

escalator

Shoes Must
Be Worn

Dogs Must
Be Carried

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

Shoes and dogs

◆ Your interpretation goes here

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

Optative vs. indicative moods

◆ Jackson observes that specifications often
improperly (or confusingly, at least) mix
two forms of statements

◆ The indicative mood states a fact
∀ x • (OnEscalator(x) ⇒
 ∃ y • (PairOfShoes(y) ∧ IsWearing(x,y))

◆ The optative mood states a wish
– What happens if someone not wearing shoes

gets on the escalator?

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Optative and indicative

◆ Indicative properties are those that are
invariantly true regardless of the program
– In essence, they describe the operating

environment for a program

◆ Optative properties are those that you want
to achieve
– In essence, these are the requirements

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Optative or indicative?

◆ Specifying the minimal separation distance
between airplanes in an air traffic control
system
– If you make it indicative (that is, state it as an

invariant) then you can’t describe the
requirements, which are intended to ensure that
this separation holds

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Jackson examples: which mood?
(a) The lift never goes from the nth to the n+2nd floor without passing the

n+1st floor
(b) The lift never passes a floor for which the floor selection light inside

the life is illuminated without stooped at that floor
(c) If the motor polarity is set to up and the motor switch setting is

changed from off to on, the lift starts to rise without 250 msecs.
(d) If the upwards arrow indicator at a floor is not illuminated when the

lift stops at the floor, it will not leave in the upwards direction.
(e) The doors are never open at a floor unless the lift is stationary at that

floor.
(f) When the lift arrives at a floor, the lift-present sensor at the floor is set

to on.
(g) If an up call button at a floor is pressed when the corresponding light

is off, the light comes on and remains on until the call is serviced by
the lift stopping at that floor and leaving in the upwards direction

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Principle of Uniform Mood

◆ Indicative properties and optative properties
should be entirely separated in a
specification document
– Reduces confusion of both the authors and the

readers

◆ If the software works right, both sets of
properties will hold as facts

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Defining terms

◆ A key aspect of ambiguity in requirements
documents arises when terms aren’t well-
defined
– When is something a “pair of shoes”?

– When is a pair of shoes “being worn”?

– What is a “dog”?

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

“dog” (noun)

◆ OED has 15 definitions (11K words in full definition)

◆ Webster’s 11 definitions include
» a highly variable domestic mammal (Canis

familiaris) closely related to the common wolf
» a worthless person
» any of various usu. simple mechanical devices for

holding, gripping, or fastening that consist of a
spike, rod, or bar

» FEET
» an investment ... not worth its price
» an unattractive girl or woman

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

“shoe” (noun, Webster’s)

◆ Six definitions including
» an outer covering for the human foot usu. made of

leather with a thick or stiff sole and an attached heel

» another's place, function, or viewpoint

» a device that retards, stops, or controls the motion of
an object

» a device (as a clip or track) on a camera that permits
attachment of accessory items

» a dealing box designed to hold several decks of
playing cards

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Designation

◆ A designation
defines a term
through a
recognition rule

◆ Allows one to
decide whether
a phenomenon
satisfies the
designation

x is a human being Human(x)

x is male Male(x)

x is female Female(x)

x is the genetic

 mother of y Mother(x,y)

x is the genetic

 father of y Father(x,y)

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Using designations

◆ It’s important to give enough definition to
make sure all agree on the meaning
– This takes some leap of faith, especially in

domains in which people have little shared
experience

◆ Allows refutable statements to be made
about the requirements

∀ x,y • ((Human(x) ∧ Mother(x,y)) ⇒
 (Female(x) ∧ Human(y)))

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Refutable descriptions

◆ Having refutable descriptions is useful

◆ The primary reason is that such a
description can be used to determine
whether a program satisfies a requirement

◆ Another is that it may help you think more
clearly about what you are saying

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

More designations?

◆ Usually you end up having more terms you
need to define

◆ Should you designate them?
– x is the genetic brother of y Brother(x,y)

◆ An alternative is to define them in terms of
existing designations
– Brother(x,y) ≅

 Male(x) ∧ ∃ f • (Father(f,x) ∧ Father(f,y) ∧
 ∃ m • (Mother(m,x) ∧ Mother(m,y)) ∧ x ≠ y

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Definitions

◆ Definitions define terms in terms of
existing designations
– They are macros, in essence

◆ They can simplify what you can talk about
– But they don’t fundamentally change what you

can talk about

◆ Definitions can’t be right or wrong
– Just well-formed (or not) and useful (or not)

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

Designations in Z

◆ The Z specification language defines atomic
elements
– [Book, Person]

◆ This indicates that there are Books and there are
Persons
– Books are always Books; Persons are always Persons

– Nothing can be both a Book and a Person

◆ The associated natural language describes the
actual designations

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

More on designations

◆ Writing designations can help clarify your
thinking
– c is a customer Customer(c)

– e is an employee Employee(e)

◆ Is the time period material?
– c is a customer in v Customer(c,v)

– e is an employee in v Employee(e,v)

◆ Can an employee be a customer?
¬∃ v,x • (Customer(x,v) ∧
 Employee(x,v))

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

Which to use?

◆ The distinction may also help clarify
– m is a member during v Member(m,v)

– m enrolls at time e Enroll(m,e)

– m resigns at time e Resign(m,e)

◆ This approach may lead to confusion
– Must you be a member to enroll?

– Are you a member after you resign?

◆ Instead define membership in terms of the
enrolls and resigns designations

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

Term limits

◆ None of this is magic

◆ The distinction in terminology between
designation and definition is just another
way to help you think more clearly when
writing specifications

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Informal approaches

◆ Running plain text requirements
specifications are increasingly less common

◆ There are a number of approaches between
this and formal specifications that give
varying degrees of leverage

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

“Will” and “Shall”

◆ Some government groups write
requirements with specified meanings for
“will” and “shall” and “may” and such
– “shall” is a requirement

– “may” is an optional requirement

– “will” describes something not under control of
the system

◆ Not always too clear

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Structured requirements

◆ I
– I.A

» I.A.ii
◆ I.A.ii.3

– I.A.ii.3.q

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

Formal methods

◆ The original use of formalism in software
engineering was for proving the
equivalence between a specification and an
implementation
– This had a number of problems

◆ But there has been a resurgence of interest
in formal methods
– Mostly due to potential usefulness in

specification

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

Potential benefits

◆ Increased clarity

◆ Ability to check specifications for internal
consistency

◆ Ability to prove properties about the
specification

◆ Not always worth the effort

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

Styles of formal specifications

◆ Model-oriented (e.g. Z, VDM)

◆ Algebraic (e.g. OBJ, Larch)

◆ Process Model (e.g. CCS, CSP)

◆ Finite State-based (e.g. Statecharts, RSML)

◆ Logical, constructive, multi-paradigm,
broad spectrum, ...

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

Model oriented

◆ Model a system by describing its state
together with operations over that state
– An operation is a function that maps a value of

the state together with values of parameters to
the operation onto a new state value

◆ A model oriented language typically
describes mathematical objects (e.g. data
structures or functions) that are structurally
similar to the required computer software

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Algebraic specifications

◆ Represent structures as algebras
– Represent results as compositions of

operations, not as explicit state

– Closely related to ADTs

◆ Algebraic methods tend to provide less
implementation bias than some other
methods

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

Process based specifications

◆ For describing concurrent systems

◆ Also algebraic in nature, but focus on
processes that can be composed over a
variety of operators (such as run in parallel)

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

Finite state based specifications

◆ Represent system as a finite state machine

◆ Transitions fired by external (and maybe
internal) events

◆ Often useful in describing aspects of
embedded systems
– Inputs from sensors, outputs to actuators

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Examples we’ll look at

◆ Model based specs

◆ Algebraic specifications

◆ Hierarchical state specifications

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Telephone features in Z

◆ Due to Mataga and Zave
– Information and Software Technology, 1995

◆ Telephone interface specification
– How features are invoked by the user

◆ Connections specification
– Consequences of interactions such as call

processing

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

Background

◆ Externally observable behavior of a
telephone switch
– Not the details of switching

◆ Multiplexing telephones
– Can handle multiple calls (but talk on only one

at a time)

◆ Features on top of POTS (Plain Old
Telephone Service)

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

More background
◆ Each physical phone can be thought of as

having multiple virtual telephones (VTs)
– Each VT has a “call appearance” with a button

and indicator lights

◆ The VTs on a phone can have different
directory numbers (DNs)
– A single DN may appear on multiple phones

◆ Simple correspondences with phones, calls
and DNs no longer exist

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 7

Notkin (c) 1997 37

UW CSE

CSE584: Software
Engineering

Features

◆ Bridging
– Picking up a VT that shares a DN with a VT

that is already actively involved in a call

◆ Hold
– Suspend call, switch to another VT

◆ Speed calling

◆ Conferencing
– Merge two calls

Notkin (c) 1997 38

UW CSE

CSE584: Software
Engineering

Features

◆ Transfer
– Like conference, but drop the original party

◆ Drop
– Drops most recent party on conference call

◆ Call pickup
– Answer a call ringing on somebody else’s

telephone

Notkin (c) 1997 39

UW CSE

CSE584: Software
Engineering

Features

◆ Call forwarding All
– All calls to a DN are forwarded

◆ Call forwarding Busy
– Forward a call if no VT for a DN is available

◆ Call Forwarding Don’t Answer
– Forward if a ringing phone is not answered

within a certain amount of time

Notkin (c) 1997 40

UW CSE

CSE584: Software
Engineering

Appropriate level?

◆ A specification must choose a level that is
appropriate

◆ In this case, a number of issues are not
addressed in this specification
– Translating dialed digits into DNs

– Any analog or digital processing of sound

– Etc.

Notkin (c) 1997 41

UW CSE

CSE584: Software
Engineering

Basic model

◆ Each telephone has a set of VTs

◆ Each VT has its own DN

◆ Each VT has a state that describes its call
processing status
– idle, dialing, ringing, etc.

◆ A call associates VTs

Notkin (c) 1997 42

UW CSE

CSE584: Software
Engineering

Physical view
larry

l1 9999

l3 9999

l2 9999

curley

c1 7777

c3 7777

c2 7777

eric

e1 6666

e3 8888

e2 7777

moe

m1 8888

m3 9999

m2 8888

talking

talking

ringing

reserved

CSE584 (Spring 1997) 5/6/97

Notkin (c) 1997 8

Notkin (c) 1997 43

UW CSE

CSE584: Software
Engineering

Logical alternative

◆ A logical alternative, at this level of
abstraction, is to specify clusters of all VTs
with the same DN
– This can clean up the specification of a call,

since it can be represented as a link between
clusters (not between VTs or DNs)

Notkin (c) 1997 44

UW CSE

CSE584: Software
Engineering

Clusters

ringing

m1 ringing

* ringback

e3 ringing

established

c1 talking

e2 reserved

established

l1 talking

m3 talking

Notkin (c) 1997 45

UW CSE

CSE584: Software
Engineering

A scenario

◆ Larry (VT l1) calls DN 777

◆ This rings VT c1 and VT e2
– curley answers at c1

◆ Later moe joins the call by bridging
– By picking up m3, which was reserved by the 1st call

◆ curley on VT c2 calls 8888
– Ringing m1 and e3 (and a tone generator)

– While ringing, curley invokes a conference,
merging the calls and dropping c2

Notkin (c) 1997 46

UW CSE

CSE584: Software
Engineering

Empty cluster…and

◆ It’s there to preserve the topology for a later
Drop

◆ The point (in the lecture) isn’t the details,
but rather the complexity even in this
relatively small example

Notkin (c) 1997 47

UW CSE

CSE584: Software
Engineering

Z schemas

◆ On the white board
– [See the paper if you didn’t come to class and

you want to see them]

Notkin (c) 1997 48

UW CSE

CSE584: Software
Engineering

Statecharts

◆ Statecharts is a visual specification
language for defining finite state machines

◆ Perhaps the central feature is that the state
description is hierarchical
– This allows much smaller descriptions for what

may be very large state machines

