
CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 1

Notkin (c) 1997 1

CSE584: Software Engineering
Lecture 8 (May 27, 1997)

David Notkin
Dept. of Computer Science & Engineering

University of Washington
www.cs.washington.edu/homes/notkin

UW CSE

CSE584: Software
Engineering Notkin (c) 1997 2

UW CSE

CSE584: Software
Engineering

Lecture 8, Outline [approximate minutes]

◆ Approaches for quality assurance [15]

◆ Proofs of correctness [30]

◆ Reviews, inspections, etc. [30]

◆ Break [10]

◆ Statistically-based approaches [45]

◆ Wrap-up [10]

◆ Next week
– PSP, CMM, ISO 9000

– Testing

– What’s hot in software engineering research

Notkin (c) 1997 3

UW CSE

CSE584: Software
Engineering

Approaches to quality assurance

◆ Testing
◆ Proofs of correctness
◆ Process improvement

– CMM, ISO 9000, reviews, inspections, …

◆ Statistical measures
– Reliability, Cleanroom, etc.

◆ Software safety (fault tree analysis, etc.)
◆ Others?

Notkin (c) 1997 4

UW CSE

CSE584: Software
Engineering

Proofs of program correctness

◆ Given a precise specification and an
implementation, show that the
implementation satisfies the specification
– Distinct from proving properties about

specifications

◆ Caveats
– Not generally practical
– Can provide some useful insights for

programming

Notkin (c) 1997 5

UW CSE

CSE584: Software
Engineering

Pre- and post-conditions

◆ Pre-condition
– Predicate describing state before a program

executes

◆ Post-condition
– Predicate describing state after a program

executes

Notkin (c) 1997 6

UW CSE

CSE584: Software
Engineering

Hoare triples

◆ {P} S {Q}
– A predicate that is true if and only if

» when pre-condition P is true

» and then S is executed

» then post-condition Q will be true

◆ Strong correctness requires S to terminate
for {P} S {Q} to be true

◆ Weak correctness does not

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 2

Notkin (c) 1997 7

UW CSE

CSE584: Software
Engineering

Example

◆ { x = X ^ y = Y }
t := x; x := y; y := t
{ x = Y ^ y = X }

◆ Compute intermediate assertions
– { x = X ^ y = Y }

t := x;
{ x = X ^ y = Y ^ t = X }
x := y
{ x = Y ^ y = Y ^ t = X }
y := t
{ x = Y ^ y = X ^ t = X }

◆ { x = Y ^ y = X ^ t = X } => { x = Y ^ y = X }

Notkin (c) 1997 8

UW CSE

CSE584: Software
Engineering

Semantics of statements
◆ In the example, I appealed to your intuition about

what := does
◆ But a more precise definition is needed
◆ This is often done using weakest preconditions

(wp’s) [Dijkstra]

– wp(S,Q) is the weakest condition that must be true
beforehand so that S terminates in a state such that Q is
true

◆ When S is a language construct, wp defines its
semantics

Notkin (c) 1997 9

UW CSE

CSE584: Software
Engineering

Assignment wp

◆ wp(x := E,Q(x)) = Q(E)

– For a condition Q(X) to be true after
execution of x := E, the condition Q(E)
must hold beforehand

◆ wp(j := j+1, j <= 1) = (j <= 0)

◆ What about side effects?

Notkin (c) 1997 10

UW CSE

CSE584: Software
Engineering

Hoare triples and wp’s

◆ A nice relationship holds between Hoare
triples and wp’s

◆ To prove {P}S{Q}
– First compute wp(S,Q)

– And then prove P => wp(S,Q)

◆ In essence, this computes backwards from
the desired post-condition, through each
statement, to the original pre-condition

Notkin (c) 1997 11

UW CSE

CSE584: Software
Engineering

Sequencing wp

◆ wp((S1;S2),Q)= wp(S1,wp(S2,Q))

◆ wp(j:=j+2;k:=k-2, j+k=1) =
 wp(j:=j+2,wp(k:=k-2,j+k=1)) =
 wp(j:=j+2,j+k-2=1) =
 (j+2+k-2=1) =
 j+k=1

Notkin (c) 1997 12

UW CSE

CSE584: Software
Engineering

Example

◆ wp(t:=x;x:=y;y:=t,x=X^y=Y)

◆ wp(t:=x;x:=y,wp(y:=t,x=X^y=Y))

◆ wp(t:=x;x:=y,x=X^t=Y)

◆ wp(t:=x,wp(x:=y,x=X^t=Y))

◆ wp(t:=x,y=X^t=Y)

◆ y=X^x=Y

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 3

Notkin (c) 1997 13

UW CSE

CSE584: Software
Engineering

Conditional wp’s

◆ wp(if C then S1 else S2,Q)

– Have to cover both parts of the conditional
◆ (C => wp(S1,Q))^(~C => wp(S2,Q)))

Notkin (c) 1997 14

UW CSE

CSE584: Software
Engineering

Example

◆ {x <> 0}
if x < 0 then x := -x else x := x-1

{x >= 0}

Notkin (c) 1997 15

UW CSE

CSE584: Software
Engineering

Loops

◆ Weakest pre-conditions on loops are
problematic since they need not terminate

◆ So instead we approximate the wp of a loop
with a loop invariant

◆ A loop invariant differs from a weakest pre-
condition
– Does not imply termination

– May be stronger than is strictly necessary

Notkin (c) 1997 16

UW CSE

CSE584: Software
Engineering

Loop invariants

◆ What role must the loop invariant I of
while B do S play to ensure post-
condition Q holds afterwards?

◆ We need
– {B^I}S{I}

– ~B ^ I => Q

◆ That is, the loop maintains the invariant and
on termination, the post-condition holds

Notkin (c) 1997 17

UW CSE

CSE584: Software
Engineering

Example

◆ {T}
j:=1; s:=b[0];
while j < 11 do
 j:=j+1; s:=b[j]
od

{s= Σ k=0..10 b[k]}

◆ What’s an appropriate loop invariant?

Notkin (c) 1997 18

UW CSE

CSE584: Software
Engineering

Termination

◆ Loop invariants don’t address termination

◆ If termination is material, a separate proof
is used

◆ These proofs generally use well-founded
sets
– Essentially, one finds a value that is monotonically

increasing (decreasing) towards a fixed bound

– In the last example, j monotonically approaches 11

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 4

Notkin (c) 1997 19

UW CSE

CSE584: Software
Engineering

Miscellaneous

◆ Recursion

◆ Side effects

◆ Procedures and functions
– Parameter passing mechanisms

◆ Abstract data types

Notkin (c) 1997 20

UW CSE

CSE584: Software
Engineering

Correctness of ADTs [Hoare]

◆ Need to define pre-
and post-conditions on
both the abstract state
and also the concrete
state

◆ Relate these through a
(many to one)
representation
function [Liskov & Guttag]

{1,2}

{7}

[1,2] [2,1]

[7]

Notkin (c) 1997 21

UW CSE

CSE584: Software
Engineering

Reviews, etc.

◆ Reviews, walkthroughs, and inspections are
all in a family of activities where an artifact
(specification, code, etc.) is studied by a
peer group to improve the artifact’s quality

◆ There is a large and increasing literature
that demonstrates the effectiveness
(although not always the cost-effectiveness)
of these approaches

Notkin (c) 1997 22

UW CSE

CSE584: Software
Engineering

Reviews, etc.

◆ N-heads are better than one

◆ Intended to
– identify defects

– identify needed improvements

– encourage uniformity and conformance to
standards

– enforce subjective rules

Notkin (c) 1997 23

UW CSE

CSE584: Software
Engineering

Purposes

◆ Increase quality through peer review

◆ Provide management visibility

◆ Encourage preparation

◆ Explicit non-purpose
– Assessment of individual abilities for

promotion, pay increases, ranking, etc.

– Management usually not permitted at reviews

Notkin (c) 1997 24

UW CSE

CSE584: Software
Engineering

Walkthrough

◆ A formal activity

◆ A programmer (designer) presents a
program (design)

◆ Values of sample data are traced

◆ Peers evaluate technical aspects of the
design

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 5

Notkin (c) 1997 25

UW CSE

CSE584: Software
Engineering

Inspections [Sommerville]

◆ Formal approach to code review

◆ Intended explicitly for defect detection (not
correction)

◆ Defects include logical errors, anomalies in
the code (such as uninitialized variables),
non-complicance with standards, etc.

Notkin (c) 1997 26

UW CSE

CSE584: Software
Engineering

Inspection requirements

◆ A precise specification must be available

◆ Peers must be knowledgeable about
organizational standards

◆ Code should be syntactically correct and
basic tests passed

◆ Error checklist must be provided

Notkin (c) 1997 27

UW CSE

CSE584: Software
Engineering

Inspection process

◆ Plan

◆ Overview

◆ Individual preparation
– Code, documentation distributed in advance

◆ Meeting

◆ Rework

◆ Follow-up

Notkin (c) 1997 28

UW CSE

CSE584: Software
Engineering

Inspection teams

◆ Four or more members

◆ Author of code

◆ Reader of code (reads to team)

◆ Inspector of code

◆ Moderator chairs meeting, takes notes, etc.

Notkin (c) 1997 29

UW CSE

CSE584: Software
Engineering

Inspection checklists

◆ Checklist of common errors drives
inspection

◆ Checklist dependent on programming
language
– Weaker type systems usually imply longer

checklists

◆ Examples
– Initialization, loop termination, array

bounds, ...

Notkin (c) 1997 30

UW CSE

CSE584: Software
Engineering

Inspection rate

◆ 500 statements/hour during overview

◆ 125 statements/hour during individual prep

◆ 90-125 statements/hour during review

◆ Inspecting 500 statements can take 40
person-hours
– For 1MLOC, this would be about 40 person-

years of effort

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 6

Notkin (c) 1997 31

UW CSE

CSE584: Software
Engineering

Issues in inspections

◆ Can groupware technology significantly
improve inspections?

◆ Can you have inspections without
meetings?
– Since meetings are expensive to hold and

schedule
– Since the preparation may catch more defects

than the meetings

◆ See Adam Porter’s talk on Thursday

Notkin (c) 1997 32

UW CSE

CSE584: Software
Engineering

Statistical approaches

◆ There are a number of approaches to quality
assurance that are (in varying senses) based
on statistics
– Software reliability

– N-version programming

– Cleanroom

Notkin (c) 1997 33

UW CSE

CSE584: Software
Engineering

Software reliability [RST]

◆ The probability that software will provide failure-
free operation in a fixed environment for a fixed
interval of time
– A system might have reliability 0.96 when used for a

one week period by an expert user

◆ Mean-time-to-failure is the average interval of
time between failures

◆ One common use of software reliability models is
to decide when it’s OK to ship a product

Notkin (c) 1997 34

UW CSE

CSE584: Software
Engineering

Operational profiles

◆ An accurate operational profile is needed
– Frequency of application of specific operations

for the program being studied

◆ An operational profile is the probability
density function (over the entire input
space) that best represents how the inputs
would be selected during the life-time of
the software

Notkin (c) 1997 35

UW CSE

CSE584: Software
Engineering

Understood domains

◆ In industries such as telecommunications,
operational profiles can be fairly easily
gathered

◆ The phone company has records of virtually
every call made in the last 20 years
– Phones are used in pretty consistent ways

Notkin (c) 1997 36

UW CSE

CSE584: Software
Engineering

Less understood domains

◆ But for shrink-wrapped software products,
operational profiles are harder to divine

◆ How will different users using different
products with different features behave?
– CPA’s vs. college students using a

spreadsheet?

◆ Will usage change over time?
– More or less than the phone system?

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 7

Notkin (c) 1997 37

UW CSE

CSE584: Software
Engineering

Cost

◆ To assess reliabilities past the 3rd or 4th
decimal place can require an enormous
amount of testing

◆ Should all failures be considered equally
bad?
– Showstoppers vs. “wrong color”

◆ Oracles of “correctness” aren’t always easy
◆ Monitoring phone switches is relatively

easy; monitoring shrinkwrap isn’t

Notkin (c) 1997 38

UW CSE

CSE584: Software
Engineering

Applying reliability models

◆ There is extensive real use of models in this
style

◆ There is also a lot of theoretical work that is
never validated
– Variants on models never compared to reality

◆ There are courses, books, etc. about how to
apply reliability modeling in practice

Notkin (c) 1997 39

UW CSE

CSE584: Software
Engineering

N-version programming

◆ The idea of N-version (multi-version)
programming comes from a common
hardware reliability approach--replication

◆ The basic notion is simple
– Have N independent teams write N versions of

a program

– Run them all simultaneously and have them
vote at specified points

Notkin (c) 1997 40

UW CSE

CSE584: Software
Engineering

Objective

◆ Since the programs are built independently, the
objective is to improve the quality by a
multiplicative factor
– A bug only hurts if it also appears in another (N/2)+1

versions

◆ This idea indeed works pretty well in hardware

◆ The cost issue in software is different, though
– Not a matter of producing multiple chips, but of

producing multiple implementations

Notkin (c) 1997 41

UW CSE

CSE584: Software
Engineering

Assumption

◆ But there is an underlying assumption at
work
– The implementations will fail independently

» Like the chips in hardware that fail based on
physical structures

– Otherwise, a multiplicative factor will not be
gained

◆ Do independently built implementations of
the same specification fail independently?

Notkin (c) 1997 42

UW CSE

CSE584: Software
Engineering

Probably not

◆ Knight and Leveson did some experiments
that showed that this assumption is
probably false
– In particular, they showed that similar errors

often arise in independently implemented
versions of the same specifications

◆ An additive benefit may arise from N-
version programming, but not a
multiplicative one

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 8

Notkin (c) 1997 43

UW CSE

CSE584: Software
Engineering

Why?

◆ Errors are often in the specification
◆ Errors are often made at boundary

conditions
◆ The complexity of a program is often in a

small piece or two, which each group has
trouble with

◆ The background and training of people in
an organization are often similar

Notkin (c) 1997 44

UW CSE

CSE584: Software
Engineering

And now...

◆ N-version advocates are still out there in an
aggressive way
– I believe some organizations still require contracted

software to be built this way

◆ There are some experiments showing
independence

◆ There are attempts to introduce variety explicitly
– Different specs, different languages, etc.

◆ I’m still completely opposed to this approach
based on the Knight/Leveson experiments

Notkin (c) 1997 45

UW CSE

CSE584: Software
Engineering

Cleanroom [Harlan Mills]

◆ Cleanroom combines managerial and
technical activities into a process intended
to lead to very high quality software
– Combines formal methods with statistical

testing for reliability with incremental
development

– Does not allow unit execution or testing

◆ Effectiveness is a controversial issue

Notkin (c) 1997 46

UW CSE

CSE584: Software
Engineering

Basics: five points

◆ Formal specification
– “Required system behavior and architecture”
– Black box stimulus-response specification

◆ Incremental development
– Partitioned into “user-function increments” that

“accumulate into the final product”

◆ Structured programming
– Limited use of control and data abstraction

constructs; stepwise refinement of specification

Notkin (c) 1997 47

UW CSE

CSE584: Software
Engineering

Basics: five points (con’t)

◆ Static verification
– Components statically verified using

mathematic correctness arguments
– Individual components neither executed nor

tested
» No white box testing, no black box testing, no

coverage analysis

◆ Statistical testing
– Each increment is tested statistically based on

operational profile

Notkin (c) 1997 48

UW CSE

CSE584: Software
Engineering

Three teams

◆ Specification team

◆ Development team
– Codes

– Statically verifies using inspections

◆ Certification team
– Develops and applies statistical tests

– Reliability models used to decide when to ship

CSE584 (Spring 1997) 5/27/97

Notkin (c) 1997 9

Notkin (c) 1997 49

UW CSE

CSE584: Software
Engineering

Claims

◆ Very aggressive positive claims
– About 20-30 systems (all under 500KLOC)

◆ 100KLOC systems with (well) under 10
errors in the field in the first year or two

◆ Finds 1-4 errors/KLOC during statistical
testing

◆ Some projects claim 70% improvement in
development productivity

Notkin (c) 1997 50

UW CSE

CSE584: Software
Engineering

Counterclaims [Beizer]

◆ Several (related) questions raised
– Are comparisons to other methods fair?
– Why eliminate unit testing?
– Why trust software reliability modeling so

much?
» Especially hard to get good operational models

◆ Claim is that unless Cleanroom embraces
modern testing approaches, it will fail to be
used broadly

