CSEbS84: Software Engineering

Lecture 1 (September 28, 1998)

David Notkin
Dept. of Computer Science & Engineering
University of Washington
www.cs.washington.edu/education/courses/584/CurrentQtr/

Introductions?

+ Very useful for me

- What do you do?

- What do you want from
the class?

- What are the most ’
serious software
engineering problems you r ~
face?

+ But time consuming
+ T'll have you do this

electronically

Notkin () 1997-98 3

Lecture 1, Outline

+ Intent and overview of course
+ Overview of course work
+ Notkin's top 10 "insights”
+ Software engineering overview

- Stuff you already know, but it's important to lay it out so
we are working from the same page

+ Administrivia and slop
- Except tonight, Tuesdays 6:30-9:30PM
- No lecture, November 3

+ ACM SIGSOFT Symposium on the Foundations of Software
Engineering

Notkin () 1997-98 2

But I do want some basics

? What companies do you work for?
? What is your general responsibility?
? Development, testing, maintenance, other?

+ Take a couple of minutes at each site to
gather these data

- Jake Cockrell, our TA, will handle the UW site

- The person whose last name comes first
alphabetically handles the other sites

* Announce when you're ready

Notkin () 1997-98 4

Distance learning

+ This is my first try at teaching using

distance learning
So I'll need help in determining what works
and what doesn't work

- Be vocal about this (for immediate things, during
class; for other things, by email)

* The whiteboard looks like a huge win

- We will try to capture the images and put them
on the web page

Notkin () 1997-98 5

Interaction

+ I like to have interaction students during
class, especially 584
- You have tons of key insights in your head
- It's boring just listening to me

- Especidlly in the evening & during a long class

* We have a new telephone-based audio
system, which should help reduce lag

* Try just interrupting me; if that doesn't
work, we'll try something else

Notkin () 1997-98 6




Your undergraduate experience?

+ How many of you took

an undergraduate

software engineering 4l ¥

course?

+ Did any of you think it

was good?

*+ What, specifically, was

particularly good or bad

about it? This is my guess
about your answers

Notkin () 1997-98 7

Intent of course

* Most of you have jobs engineering software

- I don't (and I never really have)

+ So, what can T teach you?

- Convey the state-of-the-art
- Better understand best and worst practices

- Consider differences in software engineering of
different kinds of software

* You provide the context and experience
* Meeting and talking to each other is key

Notkin () 1997-98 8

Another key intent

* There is general agreement that

- Research in software engineering doesn't have
enough influence on industrial practice

- And much in industry could improve

* Why is this true?

- What can academia do to improve the situation?
- What can industry do to improve the situation?

Notkin (c) 1997-98 9

Possible impediments

+ Lack of communication

- Industry doesn't listen to academia
- Academia doesn't understand industrial problems

* Academic tools often support languages not

commonly used in industry

* In groups of 3 or 4, list some other possible

impediments
- In b minutes, a few groups will report their lists

Notkin () 1997-98 10

Tichy's main impediment

* The lack of "experiments"” in CS research

* I have lots of reactions, including

- I don't think industry, as a rule, finds this to be
a (the) major impediment

- We do experimentation, in a different style

- Evaluation is difficult in software engineering, so
we must be creative

- This is an example of science envy

Notkin () 1997-98 1

Overview—five topics

+ Design
+ Evolution (maintenance, reverse engineering,

reengineering)

* Requirements and specification
+ Analyses and tools (static and dynamic)
* Quality assurance and testing

+ Yes, there is some overlap

Notkin () 1997-98 12




What's omitted? Lots

+ Metrics and measurement
- Some in QA
- CASE
- Some in evolution and tools
* Software process
- CMM, IS0 9000, etc.
+ Specific methodologies
+ What else?

Notkin () 1997-98 13

Design (2 lectures)

+ 1st lecture—classic topics

- Information hiding

- Layered systems

- Event-based designs (implicit invocation)
+ 2nd lecture—neo-modern design

- Limitations of classic information hiding

- Design patterns

- Software architecture

- Frameworks

Notkin () 1997-98 14

Evolution (2 lectures)

+ Why software must change
+ How and why software structure degrades

* Approaches to reducing structural
degradation

* Problem-program mapping

* Program understanding, comprehension,
summarization

Notkin () 1997-98 15

Requirements (2 lectures)

+ Domain analysis
- Use-case, collaborations, etc.
- Formal methods

- State-based, algebraic, model-based
- Model checking

Notkin () 1997-98 16

Analyses and Tools (2 lectures)

+ Static analyses

- Type checkers

- Extended type checkers
+ Dynamic analyses

- Profiling

- Memory tools

- Inferring invariants

+ Some cool research we've just started — I'd love your
feedback on this (and love an alpha-tester even more
— maybe a term project?)

Notkin () 1997-98 17

Quality assurance (1 lecture)

- Verification vs. validation
* Testing

- White box, black box, etc.

+ Reliability
+ Safety (maybe not, depending on overlap with

504)

Notkin () 1997-98 18




Anything else?

P g

Notkin () 1997-98 19

Overview of course work

* Reports on the readings
+ One web page for the class for each of the

first four technical topics
- Two students in charge of each of these 4 pages

- This is a new approach, so I'm not 100% certain
what to expect (or even what I expect)

* A final project (singly or in pairs)
+ Details on the web --- clarifications through

email, phone calls, etc.

Notkin () 1997-98 20

Grading

+ The web page lists the weights of the
different parts of assigned work
+ But I'll make you a deal

- If you focus on the material and don't get
compulsive about grading ...

- ... then T will focus on the material and not get
compulsive about grades

Notkin () 1997-98 21

Notkin's Top 10 Observations

+ About software engineering

- With apologies and appreciation to many unnamed
souls

- T'd appreciate help revising this list over the

quarter

Notkin () 1997-98 22

Number O

+ OK, I lied, there are
11:-)

- Given it's my first
distance learning
course, I now get
confused when you use
the word, "makeup”

Thanks to:
http://nenbers. aol . coni BoneEf x/ i ndex. ht m

Notkin () 1997-98 23

Number 1

- We make a huge mistake by assuming

similarity among software systems

- Ex: Does (and should) the reliability of a nuclear
power plant shutdown system tell us much about
the reliability of an educational game program?

- Ex: Does (and should) the design of a sorting
algorithm tell us much about the design of an
event-based GUI?

- So, assume differences until proven otherwise

Notkin () 1997-98 24




Number 2

+ Intellectual tools still dominate mechanical
tools in importance
- How you think is more important than the
notations, tools, etc. that you use
- Ex: Information hiding is a key design principle
+ Interface mechanisms can enforce information hiding
decisions but cannot help one make the decisions

- Ex: The notion of design patterns is more
important than languages that let you encode
them

Notkin () 1997-98 25

Number 3

+ Analogies to other engineering disciplines are
attractive but generally fall apart quickly

- One key reason is because of the incredible rate
of change in hardware and software technology

- Another is that software seems to be
constrained by few physical laws

- But T'll make them anyway, I'm sure (and you will,
t00)

- This is a variation on #1

Notkin () 1997-98 26

Number 4

- Tt is often too easy to estimate the benefits
of a "better" approach to engineering
software without assessing its costs
- "If only everyone only built software my way, it'd

be great” is a common misrepresentation

+ Ex: The formal methods community is just starting to
understand this

- But at the same time, estimating the costs and
the benefits is extremely hard, leaving us
without a good way to figure out what to do

Notkin () 1997-98 27

Number 5

* The properties that programming languages
can ensure are distant from the properties
we require software systems to have
- Programming languages can help a lot, but they

can't solve the "software engineering" problem
- Ex: Contravariant type checking (such as in ML)

has significant benefits, but regardless, it

doesn’t eliminate all errors in ML programs

+ And covariant typing, with its flaws, may be useful in
some situations

Notkin () 1997-98 28

Number 6

+ The total software
lifecycle cost will
always be 100%

- Software development
and maintenance will
always cost too much

- Software managers will
always bitch and moan

- Software engineering
researchers will always
have jobs

Notkin () 1997-98 29

Number 7

- Software engineering draws on mathematics,

cognitive psychology, management, etc., but

it is engineering and

- not mathematics, nor cognitive psychology, nor
management (nor etc.)

- If somebody is talking about software without
ever mentioning "software”, run away

Notkin () 1997-98 30




Number 8

* Tradeoffs are at the heart of software
engineering, but we're not very good at it
- Getting something for nothing is great, but it
isn't usually possible
- We almost always choose in favor of hard
criteria (e.g., performance) over soft criteria
(e.g., extensibility)
- This makes sense, both practically and theoretically
+ Brooks’ Golden Rule doesn't really work

+ But the situation leaves us up a creek to a large

degree
Notkin (c) 1997-98 31

Number 9

- Tt's always good to (re-)read anything

written by Brooks, Jackson, and Parnas

- Don't fall into Mark Twain's trap:

+ A classic is something everyone wants to have read,
but nobody wants to read.”

Notkin () 1997-98 32

Number 10

+ Software engineering researchers should
have a bit of the practitioner in them, and
software engineering practitioners should
have a bit of the researcher in them
- At the end of the quarter, I hope that I'll have

more understanding of practice, and you'll have
more understanding of the research world

Notkin () 1997-98 33

Software is critical to society

+ Economically important

- Essential for running more enterprises

+ Key part of most complex systems

+ Essential for designing many engineering

products

Notkin () 1997-98 34

Sample code sizes

Bar code scanners 10-50KLOC
4-speed transmissions 20KLOC
ATC ground system 130KLOC
Teller machine 600KLOC
Call router 2.1MLOC
B-2 Stealth bomber 3.5MLOC

Seawolf submarine combat 3.6MLOC
Space shuttle 26MLOC+1IMLOC/flight
NT5.0 40MLOC (w/scaffolding)

Notkin () 1997-98 35

Relative sizes

40000
35000
30000
25000
20000
15000
10000

5000

KLOC

Notkin () 1997-98 36




Absolute sizes

140 0 ATM (my 1 year-
120 old)
100
80 M B-2 (Jake on my
60 shoulders)
40

+ 50 lines per
page 20
- Double sided ©
+ 500 pages/ream
(2 inches)

B NT5.0 (Statue of
Liberty from
Feet High base)

Notkin () 1997-98 37

How I spend my time

+ The Great Pyramid of Giza is 481’

+ The Kingdome is 250’

+ The Colossus of Rhodes is 110’

+ The Eiffel Tower is 1033’

+ The Graduate Reading Room in Suzzallo is 65’
+ A 747 is 63 to the top of the tail

+ The Brooklyn Bridge is 135’ above the water
+ Titanic's height from keel to bridge is 104’

+ The EE/CSE building is about 90'

Notkin () 1997-98 38

Delivered source lines per person

+ Common estimates are that a person can
deliver about 1000 source lines per year

- Including documentation, scaffolding, etc.

- Obviously, most complex systems require
many people to build

+ Even an order of magnitude increase doesn't
eliminate the need for coordination

Notkin (c) 1997-98 39

Inherent & accidental complexity

+ Brooks distinguishes these kinds of software

complexity

- We cannot hope to reduce the inherent
complexity

- We can hope to reduce the accidental complexity

- Some (much?) of the inherent complexity

comes from the incredible breadth of
software we build

+ That said, it's not always easy to distinguish

between these kinds of complexity

Notkin () 1997-98 40

"The Software Crisis"

- We've been in the midst of a "software

crisis” ever since the 1968 NATO meeting

- crisis -- (1) an unstable situation of extreme
danger or difficulty; (2) a crucial stage or
turning point in the course of something [WordNet]

+ We cannot produce or maintain high-quality
software at reasonable price and on schedule
- Gibb's Scientific American article

- "Software systems are like cathedrals; first we
build them and they we pray" —Redwine

Notkin () 1997-98 41

Notkin's view—"mostly hogwash"

* Given the context, we do pretty well

- We surely can, should and must improve

- Some so-called software "failures" are not

- They are often management errors (Ariane,
Denver airport, etc.)

- Read comp.risks (far better than comp.software-eng)

+ In some areas, we may indeed have a looming

crisis
- Safety-critical real-time embedded systems
- YaK?

Notkin () 1997-98 42




Some “crisis"” issues

* Relative cost of hardware/software

* Low productivity

*+ "Wrong" products

- Poor quality

- Importance depends on the domain

+ Constant maintenance

- "If it doesn't change, it becomes useless”
* Technology transfer is slow

Notkin () 1997-98 43

SE <> PL

Notkin () 1997-98

44

Why is it hard?

* There is no single reason software
engineering is hard—it's a "wicked problem"

- Lack of well-understood representations of
software [Brooks] makes customer and
engineer interactions hard

- Relatively young field
* Software intangibility is deceptive

Notkin () 1997-98 45

Law XXIII, Norman
Augustine [Wulf]

"

"Software is like entropy.
It is difficult to grasp,
weighs nothing, and obeys
the second law of
thermodynamics; i.e., it
always increases."

Notkin (c) 1997-98

46

Dominant discipline

* As the size of the software system grows, the
key discipline changes [Stu Feldman, thru 107]

- Code Size Discipline
- 103 Mathematics
- 104 Science
+ 10° Engineering
- 106 Social Science
- 107 Politics
- 108 ??

Notkin () 1997-98 47

Is it engineering?

Notkin () 1997-98

48




