Name:

CSE P505, Spring 2006, Final Examination
6 June 2006

Rules:
e Please do not turn the page until everyone is ready.

e The exam is closed-book, closed-note, except for two sides of one 8.5x11in piece of paper.

Please stop promptly at 8:30.
e You can rip apart the pages, but please write your name on each page.

e There are 100 points total, distributed very unevenly among 7 questions (most of which have
multiple parts).

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.
e The questions are not necessarily in order of difficulty.

e Skip around and focus on the questions worth more points.

If you have questions, ask.

Relax. You are here to learn.

Name:

For your reference (page 1 of 2):

skip|z:=e]|s;s|if e s s|whilee s

s =
e == i|lz|letelexe
i@ e {..,-2,-1,0,1,2,...})
(SL’ S {Xl,XZ,...,y1,y27‘..,21,22,.‘.,...})
H:el iand H; s | H
ADD MULT
CONST VAR Hi;e | a H;e | e Hi;e | a H;er | co
H;cl c H;z | H(x) H;e+e | ¢ +e H;eixey | ¢ *xco
ASSIGN SEQ
SKIP Hiel i H;s | H' H"; sy | H
H; skip | H H;z:=¢ | Hz—1i H; 5138 | H
IF1l IF2 WHILE
H:;el i i£#0 H;s | H H;ell 0 H; sy | H H ; if e (s;while e s) skip | H’
H:ifes sy | H H;ifes sy 4 H H ; whilees | H'
e == Ar.e|zxz]|ee
v o= An.e
’e J v and substitution‘
FV(@) = {2}
e Az. e e v es{va/x v
1 ¢ s e bve eslwa/o} FV(ey ea) = FV(ey)UFV(ep)
Ax.e || Ax.e eres | v FV(a.e) = FV(e)— {z}
y#£a ei{e/at=e1 efe/at=¢) efe/at=ei yFz ygrVie

ale/ey =e yle/a}=y

(er e2){e/z} = €] €

(\y. e1){e/z} = My. €}

clz| AT e|eel| Aa. e eT]

e u=
T u= int|7T—7]|a|VYar
v = clArToe|Aa.e
r == |To7 | T,

e—eandlke:T

e—¢e e—¢ e—¢e

e ey — € e ve—uve e[r] — €'[7] (Az:7. e)v — e{v/x} (Aa. e)[r] — e{r/a}
'kz:T(x) T'ke:int

NembFe:m 'kn Nate:n I'key:mo— 11 T'hex:im F'kFe:Var T'km

T'EAzm.e:m —m 't Aa. e:Va.r

IF'Fejes:m Tk elr]: ni{r/a}

Name:

e == Xr.e|lx|eel|c]|(ee)]|el|e2|Ae]|Be]|matchewith Ax—elBxz—e]|letrec fz. e
| {ll :61,...,ln :en} ‘ e.li
v == Ax.elc| () |Av|Bu|{l=v,...,l,=v}
T o= int|ro7|rx7|74+7|{li=7,...,l, =7}
e— e
€1 — €} ey — €
e1 e3 — €] ea v ey — v € (A\z. e) v — efv/z} (letrec f x. e) v — e{v/x}{(letrec f z. e)/f}
e — €} ey — € e—e e— ¢
(e1,e2) — (€], e2) (v,e2) — (v, eh) el—el e2—e'.2 (v1,v2).1 — vy (v1,v2).2 — vy
e—¢€ e—¢ e1 — €]
Ae—Ae Be—Be¢ match e; with A z — e3|B y — e3 — match €] with Az — e3|B y — e3

(match (A v) with A — e3|B y — e3) — ea{v/z} (match (B v) with A z — e3|B y — e3) — es{v/y}

{li=vi,.. . lp=v}.li = v
e — el
{llzvlauwlifl:wfbli:€i7~~«,ln:€n}—>{ll:Ulwu,lifl:Uifl,lizegauwln:@n}
’Fl—e:TandTlng
Nz:mke:m 'Feg:m—mn I'Fey:m
T'kc:int Ptax:T(x) T'FXXz.e:m — 1 I'Fejey:m
Lfimm—mz:mbe:n ke :m I'iep:m F'Fe:mxm F'e:m*xm
T'kFletrec fx.e:1 — It (e1,e9): 71 %72 I'tel:mn T'Fe2:m
I'kFe:m I'Fe:m I'kel:m+1m Ie:mbey:m3 ly:mbFes:Ts
F'FAe:1+m I'FBe:m +m FI—(matchelwithAx—>eg|By—>eg):7'3
ke :m Tke,:T, labels distinct Tke:{li=m,...,ln="n} 1<i:<n
Fl—{llzel,...,ln:en}:{11:7'17...,171:7'”} I‘I—e.li:ﬂ-
T'ke:r <7 71 < Ty Ty < T3 T3 < T1 To < Ty
T'ke: 7 T<T 1 < T3 T — Tog < T3 — Ty

{li=m1,.. lp=mp, =1} < {li="1,..., ln,="n}

{11:7'17‘..,li:Ti,lj:Tj,...,ln:Tn} é {11:7'1,...,lj:Tj,li:Ti,..‘,ln:Tn}
7 <7l
{11:7'1,...,[1':7'2',...,ln:Tn} § {11:7'1,...,li:’l'i/,...,ln:’rn}

Name:

1. (20 points) Suppose we add division to our IMP expression language. In Caml, the expression syntax
becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0. We
are ignoring statements; assume an IMP program is an expression that takes an unknown heap and
produces an integer.

(a) Write a Caml function nsz (stands for “no syntactic zero”) of type exp->bool that returns false
if and only if its argument contains a division where the second argument is the integer constant
0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:

i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Solution:

let rec nsz e =
match e with
Int _ -> true
| Var _ -> true
| Plus(el,e2) -> nsz el && nsz e2
| Times(el,e2) -> nsz el && nsz e2
| Div(el,Int 0) -> false
| Div(el,e2) -> nsz el && nsz e2

The type system is not sound: It may accept a program that would get stuck at run-time. For example,
Div(3,x) would get stuck for any heap that mapped x to 0.

The type system is complete: All programs it rejects will get stuck at run-time under any heap. That is
because expression evaluation always evaluates all subexpressions, so the division-by-zero will execute.
(Substantial partial credit for explaining that code that doesn’t execute leads to incompleteness. It
just happens that IMP expressions do not have code that doesn’t execute.)

Name:

. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and
the expected behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a)
(b)

What functionality do these three bindings provide a client?

What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Solution:

(a)

They provide maps from strings to values (where the client chooses the type of the values). empty
is the empty-map; calling lookup with it and any string raises an exception. extend creates a
larger map from a smaller one (m) by having x map to v (shadowing any previous mapping for x)
and otherwise using the map m.
(We didn’t ask how the code works: A map is represented by a Caml function from strings to
values, so lookup is just function application. extend creates a new function that uses m, x, and
v as free variables: If the string it is passed is not equal to x, then it just applies the smaller map
m to s.)

empty : ’a -> ’b

extend : (string -> ’a) -> string -> ’a -> (string -> ’a)

lookup : (’a -> ’b) -> ’a -> ’b

Name:

3. (16 points) When we added sums (syntax A e, B e, and match e; with A © — e3|B y — e3) to the
A-calculus, we gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e |} v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match ey with Az — ey By —e3|Cz— ey

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

Solution:

(a)

elv el v
AelAv BelBuw
er b Avr ex{vi/x} | vo e1 {Bor es{vi/y} oo
match e; with A z — e3|B y — e3 | va match e; with A z — e3|B y — e3 | va

(b) One solution: Replace every B e with B(A e) and C e with B(B e). Replace every:
match e; with Az — ey By —e3 |Cz— ey

with:
match e; with A x — ey |[B ¢ — (match ¢ with Ay — e3 |[B 2z — ¢e4)

Name:

. (14 points) Consider a A-calculus with tuples (i.e., “pairs with any number of fields”), so we have
expressions (e1, €, ..., ¢,) and e.i and types 71 * 7o x ... x 7,,. For each of our subtyping rules for records,
explain whether or not an analogous rule for tuples makes sense.

Solution:

e The permutation rule does mot make sense. Tuple fields are accessed by position so subsuming
string*int to int*string would allow e.2 to have type string when it should not.

e The width and depth rules do make sense for the same reasons as records: Forgetting about
fields on the right means only that fewer expressions of the form e.i will type-check. Assuming
tuple-fields are read-only just like record fields, covariant subtyping is correct.

Name:

5. (14 points) Assume a class-based object-oriented language as in class, and a program that contains
the call e.f((C)el) where el is a (compile-time) subtype of C and the whole call type-checks.

(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing
the call to e.f (e1)) could cause the program to still type-check but behave differently? Explain.

(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that
removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer
type-check? Explain.

(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the
call to e.f(el)) could cause the program to behave differently? Explain.

Solution:

(a) Yes, it is possible. For example, suppose:

e e2 has type A, which is a subtype of C.
e ¢ has type D and class D defines methods £(C) and f (4).

Now removing the cast results in a different method being called.
(b) Yes, it is possible. For example, suppose:
e e2 has type A, which is a subtype of C and B.
e ¢ has type D and class D defines methods £ (C) and f (B), but not £(A).
Now removing the cast results in an ambiguous call.

(¢) No, it is not possible. The method called depends on the run-time types of the values that e and
el evaluate to, and (C)el evaluates to the same value as el.

Name:

6. (9 points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right
uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates.
Only the lines between the (¥-------——- *) comments differ.

type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst el_with e2_for x = ... (* unimportant *)
exception UnboundVar

let rec interp e = let rec interp e =
match e with match e with
Var _ -> raise UnboundVar Var x -> raise UnboundVar
| Lam _ -> e | Lam _ -> e
| Apply(el,e2) -> | Apply(el,e2) ->
(H=mmmmmmmm %) O %)

let v2r = ref (Var "dummy") in
let t = Thread.create

let v2 = interp e2 in (fun () -> v2r := interp e2) () in
let vl = interp el in let vl = interp el in
Thread. join t;
let v2 = !v2r in
(#mmmmmmmmmm %) (#mmmmmmmm o %)
match vl with match vl with
Lam(x,e3) -> interp(subst e3 v2 x) Lam(x,e3) -> interp(subst e3 v2 x)
| _ -> failwith "impossible" | _ -> failwith "impossible"

(a) Describe an input to these functions for which the interpreter on the right would raise an exception
and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)

(b) Explain why moving the line “let v2r = ref (Var "dummy") in” out to the top-level (and
removing the keyword “in”) would make the interpreter on the right behave unpredictably (even
for inputs with no free variables).

Solution:

(a) An argument that applies an expression with an unbound variable to an expression that doesn’t
terminate shows the difference. For example:

App (Var ("x"),
App(Lam ("x", App(Var "x", Var "x")),
Lam (IIXII, App(Var IIXII, Var "X"))))

(b) Interpretation could lead to more than two threads running concurrently because of nested appli-
cations: An expression like App (App(el,e2),App(e3,e4)) would lead to four threads, and using
a shared reference leads to a race condition: The thread evaluating App(el,e2) may not read
the reference set by the thread evaluating e2 until another thread (e.g., the thread evaluating e4)
sets the reference to hold another value.

Name:

7. (7 points) You can do this problem in one of Caml, C, C++, Java, or C#. Your choice does not
really change the problem.

(a) Write a short program that will exhaust memory if there is no garbage collector but take almost
no space if there is a garbage-collector.

(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only
small objects.

Solution:

(a) #include <stdlib.h>
int main() {
for(;;)
malloc(4);
}

(b) #include <stdlib.h>
struct L { struct L * x; };
struct L * p = NULL;
int main() {

for(;;) {
struct L * q = malloc(sizeof (struct L));
q->x = p;
P =q;

}

}

10

