
Name:

CSE P505, Spring 2006, Final Examination
6 June 2006

Rules:

• Please do not turn the page until everyone is ready.

• The exam is closed-book, closed-note, except for two sides of one 8.5x11in piece of paper.

• Please stop promptly at 8:30.

• You can rip apart the pages, but please write your name on each page.

• There are 100 points total, distributed very unevenly among 7 questions (most of which have
multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty.

• Skip around and focus on the questions worth more points.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

For your reference (page 1 of 2):

s ::= skip | x := e | s; s | if e s s | while e s
e ::= i | x | e + e | e ∗ e
(i ∈ {. . . ,−2,−1, 0, 1, 2, . . .})
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . .})

H ; e ⇓ i and H ; s ⇓ H ′

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1 + c2

mult
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 ∗ e2 ⇓ c1 ∗ c2

skip

H ; skip ⇓ H

assign
H ; e ⇓ i

H ; x := e ⇓ H,x 7→ i

seq

H ; s1 ⇓ H ′′ H ′′ ; s2 ⇓ H ′

H ; s1; s2 ⇓ H ′

if1
H ; e ⇓ i i 6= 0 H ; s1 ⇓ H ′

H ; if e s1 s2 ⇓ H ′

if2
H ; e ⇓ 0 H ; s2 ⇓ H ′

H ; if e s1 s2 ⇓ H ′

while
H ; if e (s;while e s) skip ⇓ H ′

H ; while e s ⇓ H ′

e ::= λx. e | x | e e
v ::= λx. e

e ⇓ v and substitution

λx. e ⇓ λx. e

e1 ⇓ λx. e3 e2 ⇓ v2 e3{v2/x} ⇓ v

e1 e2 ⇓ v

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (λx. e) = FV (e)− {x}

x{e/x} = e

y 6= x

y{e/x} = y

e1{e/x} = e′1 e2{e/x} = e′2
(e1 e2){e/x} = e′1 e′2

e1{e/x} = e′1 y 6= x y 6∈ FV (e)
(λy. e1){e/x} = λy. e′1

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ | Γ, α

e → e′ and Γ ` e : τ

e → e′

e e2 → e′ e2

e → e′

v e → v e′
e → e′

e[τ] → e′[τ] (λx:τ . e)v → e{v/x} (Λα. e)[τ] → e{τ/α}

Γ ` x : Γ(x) Γ ` c : int

Γ, x:τ1 ` e : τ2 Γ ` τ1

Γ ` λx:τ1. e : τ1 → τ2

Γ, α ` e : τ1

Γ ` Λα. e : ∀α.τ1

Γ `e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ `e : ∀α.τ1 Γ ` τ2

Γ ` e[τ2] : τ1{τ2/α}

2

Name:

e ::= λx. e | x | e e | c | (e, e) | e.1 | e.2 | A e | B e | match e with A x → e|B x → e | letrec f x. e
| {l1 = e1, . . . , ln = en} | e.li

v ::= λx. e | c | (v, v) | A v | B v | {l1 = v, . . . , ln = v}
τ ::= int | τ → τ | τ ∗ τ | τ + τ | {l1 = τ, . . . , ln = τ}

e → e′

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx. e) v → e{v/x} (letrec f x. e) v → e{v/x}{(letrec f x. e)/f}

e1 → e′1
(e1, e2) → (e′1, e2)

e2 → e′2
(v, e2) → (v, e′2)

e → e′

e.1 → e′.1
e → e′

e.2 → e′.2 (v1, v2).1 → v1 (v1, v2).2 → v2

e → e′

A e → A e′
e → e′

B e → B e′
e1 → e′1

match e1 with A x → e2|B y → e3 → match e′1 with A x → e2|B y → e3

(match (A v) with A x → e2|B y → e3) → e2{v/x} (match (B v) with A x → e2|B y → e3) → e3{v/y}

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en} → {l1 = v1, . . . , li−1 = vi−1, li = e′i, . . . , ln = en}

Γ ` e : τ and τ1 ≤ τ2

Γ ` c : int Γ ` x : Γ(x)
Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ, f : τ1 → τ2, x : τ1 ` e : τ2

Γ ` letrec f x. e : τ1 → τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2

Γ ` e.2 : τ2

Γ ` e : τ1

Γ ` A e : τ1 + τ2

Γ ` e : τ2

Γ ` B e : τ1 + τ2

Γ ` e1 : τ1 + τ2 Γ, x : τ1 ` e2 : τ3 Γ, y : τ2 ` e3 : τ3

Γ ` (match e1 with A x → e2|B y → e3) : τ3

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct
Γ ` {l1 = e1, . . . , ln = en} : {l1=τ1, . . . , ln=τn}

Γ ` e : {l1=τ1, . . . , ln=τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′ τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

τ3 ≤ τ1 τ2 ≤ τ4

τ1 → τ2 ≤ τ3 → τ4

{l1=τ1, . . . , ln=τn, l=τ} ≤ {l1=τ1, . . . , ln=τn}

{l1=τ1, . . . , li=τi, lj=τj , . . . , ln=τn} ≤ {l1=τ1, . . . , lj=τj , li=τi, . . . , ln=τn}

τi ≤ τ ′i
{l1=τ1, . . . , li=τi, . . . , ln=τn} ≤ {l1=τ1, . . . , li=τ ′i , . . . , ln=τn}

3

Name:

1. (20 points) Suppose we add division to our IMP expression language. In Caml, the expression syntax
becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0. We
are ignoring statements; assume an IMP program is an expression that takes an unknown heap and
produces an integer.

(a) Write a Caml function nsz (stands for “no syntactic zero”) of type exp->bool that returns false
if and only if its argument contains a division where the second argument is the integer constant
0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:

i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Solution:

let rec nsz e =
match e with
Int _ -> true

| Var _ -> true
| Plus(e1,e2) -> nsz e1 && nsz e2
| Times(e1,e2) -> nsz e1 && nsz e2
| Div(e1,Int 0) -> false
| Div(e1,e2) -> nsz e1 && nsz e2

The type system is not sound: It may accept a program that would get stuck at run-time. For example,
Div(3,x) would get stuck for any heap that mapped x to 0.

The type system is complete: All programs it rejects will get stuck at run-time under any heap. That is
because expression evaluation always evaluates all subexpressions, so the division-by-zero will execute.
(Substantial partial credit for explaining that code that doesn’t execute leads to incompleteness. It
just happens that IMP expressions do not have code that doesn’t execute.)

4

Name:

2. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and
the expected behavior.

exception NoValue
let empty = fun s -> raise NoValue
let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a) What functionality do these three bindings provide a client?

(b) What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Solution:

(a) They provide maps from strings to values (where the client chooses the type of the values). empty
is the empty-map; calling lookup with it and any string raises an exception. extend creates a
larger map from a smaller one (m) by having x map to v (shadowing any previous mapping for x)
and otherwise using the map m.
(We didn’t ask how the code works: A map is represented by a Caml function from strings to
values, so lookup is just function application. extend creates a new function that uses m, x, and
v as free variables: If the string it is passed is not equal to x, then it just applies the smaller map
m to s.)

(b) empty : ’a -> ’b
extend : (string -> ’a) -> string -> ’a -> (string -> ’a)
lookup : (’a -> ’b) -> ’a -> ’b

5

Name:

3. (16 points) When we added sums (syntax A e, B e, and match e1 with A x → e2|B y → e3) to the
λ-calculus, we gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e ⇓ v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match e1 with A x → e2 |B y → e3 |C z → e4

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

Solution:

(a)

e ⇓ v

A e ⇓ A v

e ⇓ v

B e ⇓ B v

e1 ⇓ A v1 e2{v1/x} ⇓ v2

match e1 with A x → e2|B y → e3 ⇓ v2

e1 ⇓ B v1 e3{v1/y} ⇓ v2

match e1 with A x → e2|B y → e3 ⇓ v2

(b) One solution: Replace every B e with B(A e) and C e with B(B e). Replace every:

match e1 with A x → e2 |B y → e3 |C z → e4

with:
match e1 with A x → e2 |B q → (match q with A y → e3 |B z → e4)

6

Name:

4. (14 points) Consider a λ-calculus with tuples (i.e., “pairs with any number of fields”), so we have
expressions (e1, e2, ..., en) and e.i and types τ1 ∗ τ2 ∗ ... ∗ τn. For each of our subtyping rules for records,
explain whether or not an analogous rule for tuples makes sense.

Solution:

• The permutation rule does not make sense. Tuple fields are accessed by position so subsuming
string*int to int*string would allow e.2 to have type string when it should not.

• The width and depth rules do make sense for the same reasons as records: Forgetting about
fields on the right means only that fewer expressions of the form e.i will type-check. Assuming
tuple-fields are read-only just like record fields, covariant subtyping is correct.

7

Name:

5. (14 points) Assume a class-based object-oriented language as in class, and a program that contains
the call e.f((C)e1) where e1 is a (compile-time) subtype of C and the whole call type-checks.

(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing
the call to e.f(e1)) could cause the program to still type-check but behave differently? Explain.

(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that
removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer
type-check? Explain.

(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the
call to e.f(e1)) could cause the program to behave differently? Explain.

Solution:

(a) Yes, it is possible. For example, suppose:

• e2 has type A, which is a subtype of C.
• e has type D and class D defines methods f(C) and f(A).

Now removing the cast results in a different method being called.

(b) Yes, it is possible. For example, suppose:

• e2 has type A, which is a subtype of C and B.
• e has type D and class D defines methods f(C) and f(B), but not f(A).

Now removing the cast results in an ambiguous call.

(c) No, it is not possible. The method called depends on the run-time types of the values that e and
e1 evaluate to, and (C)e1 evaluates to the same value as e1.

8

Name:

6. (9 points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right
uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates.
Only the lines between the (*----------*) comments differ.

type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst e1_with e2_for x = ... (* unimportant *)
exception UnboundVar

let rec interp e = let rec interp e =
match e with match e with
Var _ -> raise UnboundVar Var x -> raise UnboundVar

| Lam _ -> e | Lam _ -> e
| Apply(e1,e2) -> | Apply(e1,e2) ->

(*----------*) (*----------*)
let v2r = ref (Var "dummy") in
let t = Thread.create

let v2 = interp e2 in (fun () -> v2r := interp e2) () in
let v1 = interp e1 in let v1 = interp e1 in

Thread.join t;
let v2 = !v2r in

(*----------*) (*----------*)
match v1 with match v1 with
Lam(x,e3) -> interp(subst e3 v2 x) Lam(x,e3) -> interp(subst e3 v2 x)

| _ -> failwith "impossible" | _ -> failwith "impossible"

(a) Describe an input to these functions for which the interpreter on the right would raise an exception
and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)

(b) Explain why moving the line “let v2r = ref (Var "dummy") in” out to the top-level (and
removing the keyword “in”) would make the interpreter on the right behave unpredictably (even
for inputs with no free variables).

Solution:

(a) An argument that applies an expression with an unbound variable to an expression that doesn’t
terminate shows the difference. For example:

App(Var("x"),
App(Lam ("x", App(Var "x", Var "x")),

Lam ("x", App(Var "x", Var "x"))))

(b) Interpretation could lead to more than two threads running concurrently because of nested appli-
cations: An expression like App(App(e1,e2),App(e3,e4)) would lead to four threads, and using
a shared reference leads to a race condition: The thread evaluating App(e1,e2) may not read
the reference set by the thread evaluating e2 until another thread (e.g., the thread evaluating e4)
sets the reference to hold another value.

9

Name:

7. (7 points) You can do this problem in one of Caml, C, C++, Java, or C#. Your choice does not
really change the problem.

(a) Write a short program that will exhaust memory if there is no garbage collector but take almost
no space if there is a garbage-collector.

(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only
small objects.

Solution:

(a) #include <stdlib.h>
int main() {
for(;;)
malloc(4);

}

(b) #include <stdlib.h>
struct L { struct L * x; };
struct L * p = NULL;
int main() {
for(;;) {
struct L * q = malloc(sizeof(struct L));
q->x = p;
p = q;

}
}

10

