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CSE P505, Spring 2006, Final Examination
6 June 2006

Rules:
e Please do not turn the page until everyone is ready.

e The exam is closed-book, closed-note, except for two sides of one 8.5x11in piece of paper.

Please stop promptly at 8:30.
e You can rip apart the pages, but please write your name on each page.

e There are 100 points total, distributed very unevenly among 7 questions (most of which have
multiple parts).

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.
e The questions are not necessarily in order of difficulty.

e Skip around and focus on the questions worth more points.

If you have questions, ask.

Relax. You are here to learn.
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1. (20 points) Suppose we add division to our IMP expression language. In Caml, the expression syntax
becomes:

type exp =
Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0. We
are ignoring statements; assume an IMP program is an expression that takes an unknown heap and
produces an integer.

(a) Write a Caml function nsz (stands for “no syntactic zero”) of type exp->bool that returns false
if and only if its argument contains a division where the second argument is the integer constant
0. Note we are not interpreting the input; nsz is not even passed a heap.

(b) If we consider division-by-zero at run-time a “stuck state” and nsz a “type system” (where true
means “type-checks”), then:

i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Solution:

let rec nsz e =
match e with
Int _ -> true
| Var _ -> true
| Plus(el,e2) -> nsz el && nsz e2
| Times(el,e2) -> nsz el && nsz e2
| Div(el,Int 0) -> false
| Div(el,e2) -> nsz el && nsz e2

The type system is not sound: It may accept a program that would get stuck at run-time. For example,
Div(3,x) would get stuck for any heap that mapped x to 0.

The type system is complete: All programs it rejects will get stuck at run-time under any heap. That is
because expression evaluation always evaluates all subexpressions, so the division-by-zero will execute.
(Substantial partial credit for explaining that code that doesn’t execute leads to incompleteness. It
just happens that IMP expressions do not have code that doesn’t execute.)
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. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and
the expected behavior.

exception NoValue

let empty = fun s -> raise NoValue

let extend m x v = fun s -> if strcmp s x then v else m s
let lookup m x = m x

(a)
(b)

What functionality do these three bindings provide a client?

What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Solution:

(a)

They provide maps from strings to values (where the client chooses the type of the values). empty
is the empty-map; calling lookup with it and any string raises an exception. extend creates a
larger map from a smaller one (m) by having x map to v (shadowing any previous mapping for x)
and otherwise using the map m.
(We didn’t ask how the code works: A map is represented by a Caml function from strings to
values, so lookup is just function application. extend creates a new function that uses m, x, and
v as free variables: If the string it is passed is not equal to x, then it just applies the smaller map
m to s.)

empty : ’a -> ’b

extend : (string -> ’a) -> string -> ’a -> (string -> ’a)

lookup : (’a -> ’b) -> ’a -> ’b
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3. (16 points) When we added sums (syntax A e, B e, and match e; with A © — e3|B y — e3) to the
A-calculus, we gave a small-step semantics and had exactly two constructors.

(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-by-
value large-step judgment e |} v with new rules. (Use 4 rules.)

(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that
have exactly three cases:

match ey with Az — ey By —e3|Cz— ey

Explain a possible translation of such a program into an equivalent one that uses only two con-
structors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to
translate match expressions. Do not write inference rules.)

Solution:

(a)

elv el v
AelAv BelBuw
er b Avr  ex{vi/x} | vo e1 {Bor  es{vi/y} oo
match e; with A z — e3|B y — e3 | va match e; with A z — e3|B y — e3 | va

(b) One solution: Replace every B e with B(A e) and C e with B(B e). Replace every:
match e; with Az — ey By —e3 |Cz— ey

with:
match e; with A x — ey |[B ¢ — (match ¢ with Ay — e3 |[B 2z — ¢e4)
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. (14 points) Consider a A-calculus with tuples (i.e., “pairs with any number of fields”), so we have
expressions (e1, €, ..., ¢,) and e.i and types 71 * 7o x ... x 7,,. For each of our subtyping rules for records,
explain whether or not an analogous rule for tuples makes sense.

Solution:

e The permutation rule does mot make sense. Tuple fields are accessed by position so subsuming
string*int to int*string would allow e.2 to have type string when it should not.

e The width and depth rules do make sense for the same reasons as records: Forgetting about
fields on the right means only that fewer expressions of the form e.i will type-check. Assuming
tuple-fields are read-only just like record fields, covariant subtyping is correct.
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5. (14 points) Assume a class-based object-oriented language as in class, and a program that contains
the call e.f((C)el) where el is a (compile-time) subtype of C and the whole call type-checks.

(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing
the call to e.f (e1)) could cause the program to still type-check but behave differently? Explain.

(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that
removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer
type-check? Explain.

(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the
call to e.f(el)) could cause the program to behave differently? Explain.

Solution:

(a) Yes, it is possible. For example, suppose:

e e2 has type A, which is a subtype of C.
e ¢ has type D and class D defines methods £(C) and f (4).

Now removing the cast results in a different method being called.
(b) Yes, it is possible. For example, suppose:
e e2 has type A, which is a subtype of C and B.
e ¢ has type D and class D defines methods £ (C) and f (B), but not £(A).
Now removing the cast results in an ambiguous call.

(¢) No, it is not possible. The method called depends on the run-time types of the values that e and
el evaluate to, and (C)el evaluates to the same value as el.
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6. (9 points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right
uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates.
Only the lines between the (¥-------——- *) comments differ.

type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst el_with e2_for x = ... (* unimportant *)
exception UnboundVar

let rec interp e = let rec interp e =
match e with match e with
Var _ -> raise UnboundVar Var x -> raise UnboundVar
| Lam _ -> e | Lam _ -> e
| Apply(el,e2) -> | Apply(el,e2) ->
(H=mmmmmmmm %) O %)

let v2r = ref (Var "dummy") in
let t = Thread.create

let v2 = interp e2 in (fun () -> v2r := interp e2) () in
let vl = interp el in let vl = interp el in
Thread. join t;
let v2 = !v2r in
(#mmmmmmmmmm %) (#mmmmmmmm o %)
match vl with match vl with
Lam(x,e3) -> interp(subst e3 v2 x) Lam(x,e3) -> interp(subst e3 v2 x)
| _ -> failwith "impossible" | _ -> failwith "impossible"

(a) Describe an input to these functions for which the interpreter on the right would raise an exception
and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)

(b) Explain why moving the line “let v2r = ref (Var "dummy") in” out to the top-level (and
removing the keyword “in”) would make the interpreter on the right behave unpredictably (even
for inputs with no free variables).

Solution:

(a) An argument that applies an expression with an unbound variable to an expression that doesn’t
terminate shows the difference. For example:

App (Var ("x"),
App(Lam ("x", App(Var "x", Var "x")),
Lam (IIXII, App(Var IIXII, Var "X"))))

(b) Interpretation could lead to more than two threads running concurrently because of nested appli-
cations: An expression like App (App(el,e2),App(e3,e4)) would lead to four threads, and using
a shared reference leads to a race condition: The thread evaluating App(el,e2) may not read
the reference set by the thread evaluating e2 until another thread (e.g., the thread evaluating e4)
sets the reference to hold another value.
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7. (7 points) You can do this problem in one of Caml, C, C++, Java, or C#. Your choice does not
really change the problem.

(a) Write a short program that will exhaust memory if there is no garbage collector but take almost
no space if there is a garbage-collector.

(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only
small objects.

Solution:

(a) #include <stdlib.h>
int main() {
for(;;)
malloc(4);
}

(b) #include <stdlib.h>
struct L { struct L * x; };
struct L * p = NULL;
int main() {

for(;;) {
struct L * q = malloc(sizeof (struct L));
q->x = p;
P =q;

}

}
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