Name: \qquad

CSE P505, Spring 2006, Final Examination 6 June 2006

Rules:

- Please do not turn the page until everyone is ready.
- The exam is closed-book, closed-note, except for two sides of one 8.5×11 in piece of paper.
- Please stop promptly at 8:30.
- You can rip apart the pages, but please write your name on each page.
- There are 100 points total, distributed very unevenly among 7 questions (most of which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty.
- Skip around and focus on the questions worth more points.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad
For your reference (page 1 of 2):

$$
\begin{aligned}
s & ::=\text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & ::=i|x| e+e \mid e * e \\
(i & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \ldots\right\}\right)
\end{aligned}
$$

$H ; e \Downarrow i$ and $H ; s \Downarrow H^{\prime}$

$$
e \Downarrow v \text { and substitution }
$$

$$
\begin{aligned}
& \overline{\lambda x . e \Downarrow \lambda x \cdot e} \\
& \begin{array}{l}
e_{1} \Downarrow \lambda x . e_{3} \quad e_{2} \Downarrow v_{2} \quad e_{3}\left\{v_{2} / x\right\} \Downarrow v \\
e_{1} e_{2} \Downarrow v
\end{array} \\
& F V(x)=\{x\} \\
& F V\left(e_{1} e_{2}\right)=F V\left(e_{1}\right) \cup F V\left(e_{2}\right) \\
& F V(\lambda x . e)=F V(e)-\{x\} \\
& \overline{x\{e / x\}=e} \quad \frac{y \neq x}{y\{e / x\}=y} \quad \frac{e_{1}\{e / x\}=e_{1}^{\prime}}{\left(e_{1} e_{2}\right)\{e / x\}=e_{1}^{\prime} e_{2}^{\prime}} \quad e_{2}\{e / x\}=e_{2}^{\prime} \quad \frac{e_{1}\{e / x\}=e_{1}^{\prime} \quad y \neq x \quad y \notin F V(e)}{\left(\lambda y \cdot e_{1}\right)\{e / x\}=\lambda y \cdot e_{1}^{\prime}} \\
& e::=c|x| \lambda x: \tau . e|e e| \Lambda \alpha . e \mid e[\tau] \\
& \tau \quad::=\text { int }|\tau \rightarrow \tau| \alpha \mid \forall \alpha . \tau \\
& v::=c|\lambda x: \tau . e| \Lambda \alpha . e \\
& \Gamma::=\cdot|\Gamma, x: \tau| \Gamma, \alpha \\
& \frac{e \rightarrow e^{\prime}}{e e_{2} \rightarrow e^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \quad \overline{e \rightarrow e^{\prime}} \overline{e[\tau] \rightarrow e^{\prime}[\tau]} \quad \overline{(\lambda x: \tau . e) v \rightarrow e\{v / x\}} \quad \overline{(\Lambda \alpha . e)[\tau] \rightarrow e\{\tau / \alpha\}} \\
& \overline{\Gamma \vdash x: \Gamma(x)} \quad \overline{\Gamma \vdash c: \text { int }} \\
& \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2} \quad \Gamma \vdash \tau_{1}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma, \alpha \vdash e: \tau_{1}}{\Gamma \vdash \Lambda \alpha \cdot e: \forall \alpha \cdot \tau_{1}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}} \quad \frac{\Gamma \vdash e: \forall \alpha \cdot \tau_{1} \quad \Gamma \vdash \tau_{2}}{\Gamma \vdash e\left[\tau_{2}\right]: \tau_{1}\left\{\tau_{2} / \alpha\right\}}
\end{aligned}
$$

Name: \qquad

```
            e ::= \lambdax. e| x| e e| c| (e,e)| e.1| e.2| A e| B e| match e with A x me|\textrm{B}x->e| letrec f x.e
            | {l, =e , ,., l}\mp@subsup{l}{n}{}=\mp@subsup{e}{n}{}}|e.\mp@subsup{l}{i}{
            v::= \lambdax.e|c|(v,v)|\textrm{A}v|\textrm{B}v|{\mp@subsup{l}{1}{}=v,\ldots,\mp@subsup{l}{n}{}=v}
            \tau ::= int | \tau }->\tau|\tau*\tau|\tau+\tau|{\mp@subsup{l}{1}{}=\tau,\ldots,\mp@subsup{l}{n}{}=\tau
e->\mp@subsup{e}{}{\prime}
```

$\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \overline{e_{2} \rightarrow e_{2}^{\prime}} \quad \overline{v e_{2} \rightarrow v e_{2}^{\prime}} \quad \overline{(\lambda x . e) v \rightarrow e\{v / x\}} \quad \overline{(\text { letrec } f x . e) v \rightarrow e\{v / x\}\{(\text { letrec } f x . e) / f\}}$
$\frac{e_{1} \rightarrow e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1}^{\prime}, e_{2}\right)}$
$\frac{e_{2} \rightarrow e_{2}^{\prime}}{\left(v, e_{2}\right) \rightarrow\left(v, e_{2}^{\prime}\right)}$
$\frac{e \rightarrow e^{\prime}}{e .1 \rightarrow e^{\prime} .1}$
$\frac{e \rightarrow e^{\prime}}{e .2 \rightarrow e^{\prime} .2}$

$$
\overline{\left(v_{1}, v_{2}\right) \cdot 1 \rightarrow v_{1}} \quad \overline{\left(v_{1}, v_{2}\right) \cdot 2 \rightarrow v_{2}}
$$

$$
\frac{e \rightarrow e^{\prime}}{\mathrm{A} e \rightarrow \mathrm{~A} e^{\prime}} \quad \frac{e \rightarrow e^{\prime}}{\mathrm{B} e \rightarrow \mathrm{~B} e^{\prime}} \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{\text { match } e_{1} \text { with } \mathrm{A} x \rightarrow e_{2} \mid \mathrm{B} y \rightarrow e_{3} \rightarrow \text { match } e_{1}^{\prime} \text { with } \mathrm{A} x \rightarrow e_{2} \mid \mathrm{B} y \rightarrow e_{3}}
$$

$\overline{(m a t c h}(\mathrm{A} v)$ with $\left.\mathrm{A} x \rightarrow e_{2} \mid \mathrm{B} y \rightarrow e_{3}\right) \rightarrow e_{2}\{v / x\} \quad \overline{\left(m a t c h(\mathrm{~B} v) \text { with } \mathrm{A} x \rightarrow e_{2} \mid \mathrm{B} y \rightarrow e_{3}\right) \rightarrow e_{3}\{v / y\}}$

$$
\overline{\left\{l_{1}=v_{1}, \ldots, l_{n}=v_{n}\right\} \cdot l_{i} \rightarrow v_{i}}
$$

$\begin{aligned} e_{i} & \rightarrow e_{i}^{\prime} \\ \left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}, \ldots, l_{n}=e_{n}\right\} & \rightarrow\left\{l_{1}=v_{1}, \ldots, l_{i-1}=v_{i-1}, l_{i}=e_{i}^{\prime}, \ldots, l_{n}=e_{n}\right\}\end{aligned}$
$\Gamma \vdash e: \tau$ and $\tau_{1} \leq \tau_{2}$

$$
\frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
$$

$$
\frac{\Gamma, f: \tau_{1} \rightarrow \tau_{2}, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \text { letrec } f x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .1: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .2: \tau_{2}}
$$

$$
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathrm{~A} e: \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{~B} e: \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{2}: \tau_{3} \quad \Gamma, y: \tau_{2} \vdash e_{3}: \tau_{3}}{\Gamma \vdash\left(\text { match } e_{1} \text { with } \mathrm{A} x \rightarrow e_{2} \mid \mathrm{B} y \rightarrow e_{3}\right): \tau_{3}}
$$

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \ldots \quad \Gamma \vdash e_{n}: \tau_{n} \quad \text { labels distinct }}{\Gamma \vdash\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\}:\left\{l_{1}=\tau_{1}, \ldots, l_{n}=\tau_{n}\right\}} \quad \frac{\Gamma \vdash e:\left\{l_{1}=\tau_{1}, \ldots, l_{n}=\tau_{n}\right\}}{\Gamma \vdash e . l_{i}: \tau_{i}} \quad 1 \leq i \leq n
$$

$$
\frac{\Gamma \vdash e: \tau \quad \tau \leq \tau^{\prime}}{\Gamma \vdash e: \tau^{\prime}} \quad \overline{\tau \leq \tau} \quad \frac{\tau_{1} \leq \tau_{2} \tau_{2} \leq \tau_{3}}{\tau_{1} \leq \tau_{3}} \quad \frac{\tau_{3} \leq \tau_{1} \quad \tau_{2} \leq \tau_{4}}{\tau_{1} \rightarrow \tau_{2} \leq \tau_{3} \rightarrow \tau_{4}}
$$

$$
\overline{\left\{l_{1}=\tau_{1}, \ldots, l_{n}=\tau_{n}, l=\tau\right\} \leq\left\{l_{1}=\tau_{1}, \ldots, l_{n}=\tau_{n}\right\}}
$$

$$
\overline{\left\{l_{1}=\tau_{1}, \ldots, l_{i}=\tau_{i}, l_{j}=\tau_{j}, \ldots, l_{n}=\tau_{n}\right\} \leq\left\{l_{1}=\tau_{1}, \ldots, l_{j}=\tau_{j}, l_{i}=\tau_{i}, \ldots, l_{n}=\tau_{n}\right\}}
$$

$$
\frac{\tau_{i} \leq \tau_{i}^{\prime}}{\left\{l_{1}=\tau_{1}, \ldots, l_{i}=\tau_{i}, \ldots, l_{n}=\tau_{n}\right\} \leq\left\{l_{1}=\tau_{1}, \ldots, l_{i}=\tau_{i}^{\prime}, \ldots, l_{n}=\tau_{n}\right\}}
$$

Name: \qquad

1. ($\mathbf{2 0}$ points) Suppose we add division to our IMP expression language. In Caml, the expression syntax becomes:
```
type exp =
    Int of int | Var of string | Plus of exp * exp | Times of exp * exp | Div of exp * exp
```

Our interpreter (not shown) raises a Caml exception if the second argument to Div evaluates to 0 . We are ignoring statements; assume an IMP program is an expression that takes an unknown heap and produces an integer.
(a) Write a Caml function nsz (stands for "no syntactic zero") of type exp->bool that returns false if and only if its argument contains a division where the second argument is the integer constant 0 . Note we are not interpreting the input; nsz is not even passed a heap.
(b) If we consider division-by-zero at run-time a "stuck state" and nsz a "type system" (where true means "type-checks"), then:
i. Is nsz sound? Explain.
ii. Is nsz complete? Explain.

Name: \qquad
2. (20 points) Consider this Caml code. It uses strcmp, which has type string->string->bool and the expected behavior.

```
exception NoValue
let empty = fun s -> raise NoValue
let extend m x v = fun s >> if strcmp s x then v else m s
let lookup m x = m x
```

(a) What functionality do these three bindings provide a client?
(b) What types do each of the bindings have?
(Note: They are all polymorphic and may have more general types than expected.)

Name: \qquad
3. ($\mathbf{1 6}$ points) When we added sums (syntax $\mathbf{A} e, \mathbf{B} e$, and match e_{1} with $\mathbf{A} x \rightarrow e_{2} \mid \mathbf{B} y \rightarrow e_{3}$) to the λ-calculus, we gave a small-step semantics and had exactly two constructors.
(a) Give sums a large-step semantics, still for exactly two constructors. That is, extend the call-byvalue large-step judgment $e \Downarrow v$ with new rules. (Use 4 rules.)
(b) Suppose a program is written with three constructors (A, B, and C) and match expressions that have exactly three cases:

$$
\text { match } e_{1} \text { with } \mathrm{A} x \rightarrow e_{2}\left|\mathrm{~B} y \rightarrow e_{3}\right| \mathrm{C} z \rightarrow e_{4}
$$

Explain a possible translation of such a program into an equivalent one that uses only two constructors. (That is, explain how to translate the 3 constructors to use 2 constructors and how to translate match expressions. Do not write inference rules.)

Name:
4. ($\mathbf{1 4}$ points) Consider a λ-calculus with tuples (i.e., "pairs with any number of fields"), so we have expressions $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $e . i$ and types $\tau_{1} * \tau_{2} * \ldots * \tau_{n}$. For each of our subtyping rules for records, explain whether or not an analogous rule for tuples makes sense.

Name: \qquad
5. ($\mathbf{1 4}$ points) Assume a class-based object-oriented language as in class, and a program that contains the call e.f((C)e1) where e1 is a (compile-time) subtype of C and the whole call type-checks.
(a) If calls are resolved with static overloading, is it possible that removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to still type-check but behave differently? Explain.
(b) If calls are resolved with static overloading and we have multiple inheritance, is it possible that removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to no longer type-check? Explain.
(c) If calls are resolved with multimethods, is it possible that removing the cast C (i.e., changing the call to e.f(e1)) could cause the program to behave differently? Explain.

Name: \qquad
6. ($\mathbf{9}$ points) Here are two large-step interpreters for the untyped lambda-calculus. The one on the right uses parallelism. Recall Thread.join blocks until the thread described by its argument terminates. Only the lines between the (*----------*) comments differ.

```
type exp = Var of string | Lam of string*exp | Apply of exp * exp
let subst e1_with e2_for x = ... (* unimportant *)
exception UnboundVar
let rec interp e =
    let rec interp e =
    match e with
        match e with
        Var _ -> raise UnboundVar
        Var x -> raise UnboundVar
    | Lam _ -> e
    | Lam _ -> e
    | Apply(e1,e2) ->
    | Apply(e1,e2) ->
            (*----------*)
                        (*----------**)
                let v2r = ref (Var "dummy") in
                        let t = Thread.create
            let v2 = interp e2 in
                    (fun () -> v2r := interp e2) () in
            let v1 = interp e1 in
                        let v1 = interp e1 in
                Thread.join t;
                let v2 = !v2r in
            (*----------**)
                (*----------*)
            match v1 with
                match v1 with
            Lam(x,e3) -> interp(subst e3 v2 x)
                Lam(x,e3) -> interp(subst e3 v2 x)
        | _ -> failwith "impossible"
    | _ -> failwith "impossible"
```

(a) Describe an input to these functions for which the interpreter on the right would raise an exception and the interpreter on the left would not. (Note: Evaluation of expressions may not terminate.)
(b) Explain why moving the line "let $\mathrm{v} 2 \mathrm{r}=$ ref (Var "dummy") in" out to the top-level (and removing the keyword "in") would make the interpreter on the right behave unpredictably (even for inputs with no free variables).

Name: \qquad
7. ($\mathbf{7}$ points) You can do this problem in one of Caml, C, C++, Java, or C\#. Your choice does not really change the problem.
(a) Write a short program that will exhaust memory if there is no garbage collector but take almost no space if there is a garbage-collector.
(b) Write a short program that will exhaust memory even if there is a garbage collector. Create only small objects.

