Catch-A-Ride

By: Keith Stone, Jarret Falkner, Ashwini Varma

Problem and solution overview

Although participating in a rideshare provides social and economic benefits, the logistics
of coordinating drivers and passengers create challenges that undermine widespread
ridesharing. Systems like King County’s Vanpool have limitations such as maintaining
predictable weekday schedules, requiring a minimum of five people per trip, and upfront
identification of secondary drivers and a mileage log accountant. Message board methods like
Craigslist and Facebook groups have limited search functionality and leave riders with
uncertainty about potentially unreliable or even unsafe drivers. Our proposed Catch-A-Ride
product differentiates itself from existing rideshare systems by providing a semistructured
smartphone application that includes strong user profiles to instill community trust as well as
advanced search functionality to better match drivers and passengers.

Contextual inquiry participants

Steph is a grad student at the University of Washington. She lives very close to the city
and does not own her own car. She has a U-Pass and subscribes to both Car2go and Zipcar for
ad hoc car rental services. We met Steph through a craigslist ad where we offered a ride to
Olympia in exchange for answering our questions. We picked her up in the central district in
Seattle and during the ride the three of us asked questions about how she found our post and
her thoughts and experiences leading up to the ride. We dropped her off at her destination in
Olympia.

Leon is the rideshare coordinator at The Summit at Snoqualmie, a ski resort near
Seattle. The Summit presents unique challenges for carpooling as the majority of employees are
seasonal and live quite a distance away. While visiting his office at the mountain we interviewed
him on how his program works and how he uses carpooling. He is unfortunately not the model
of a seasonal worker as his position is year round, but as a user of the system and with no
seasonal workers hired at that point in the year he still made a great source of information. Leon
is approximately 35 and represents the top end of our demographic.

Chris is another full time human resources employee at The Summit at Snoqualmie. We
had not originally intended to meet him but he offered another angle of inquiry while interviewing
Leon. Chris is much younger, approximately 23, and represents a lower section of our target
audience. While his position is also year round he was hired recently and so provides somewhat
of a perspective on what a seasonal worker could go through.

Leslie is a full time employee at Microsoft. He is approximately 35 years old, near the
top end of our demographic. He has been using Vanpool since Nov 2010. His daily commute is
about 50 miles round trip. We interviewed him on how the King County Vanpool program works
and how he uses it. He was a good source of information, however, the biggest pain point of the



Vanpool system seems to be finding the right vanpool and Leslie was unable to provide insight
here. Leslie found his Vanpool because of his neighbor - his neighbor is a VanPool driver.

Contextual inquiry results (1.5 pages)

We interviewed 3 people who used the employee vanpool for commuting to work and one
person who used the Craigslist rideshare to make a one off long distance trip from Seattle to
Olympia. The commonality with all 4 people was that they each did it with the intent to lower
environmental impact and also as a means to save money. Since the taks/mechanics of the
employee vanpool are different from the Craigslist rideshare we will describe them separately.

Employee Vanpool
For the employee vanpool the first and more often than not, a one time task, is to find the “right”
vanpool. This is usually done by registering with the King County vanpool system, where they try
and match you with existing or newly forming vanpools. People are also encouraged to put up
notices on bulletin boards and most companies seem to have a commute/transport coordinator
who can help spread the word. The people we spoke to each had ended up in the vanpool
because they knew someone who was already a part of an existing vanpool. Leslie, the Microsoft
employee, got to know about the vanpool because his neighbor was the designated driver and
the vanpool needed more people to join. In general though, because Microsoft has such a large
number of employees, there are email distribution aliases set up for people that live in different
neighborhoods e.g. one for Ravenna, another for Monroe etc. An employee can advertise to a
broad set of relevant people if they wanted to join a vanpool by sending email to the relevant
alias. Leon, who worked at the Snoqualmie ski resort, got involved because of an organic
connection with the previous HR head. Leon took on the role of rideshare coordinator and in
order to get more people involved in the rideshare/vanpool program used the following measures

e Big push at orientation. (1,500 hires per season.)

e Postings at 14 time clocks throughout the mountain

e Trickle down approach through the supervisors. (Remind them to remind the employees)
At Snoqualmie there seems to be a high churn of employees and most of the employees don’t
have a desk job and use smartphones as the primary means of communication. Hence there
isn’t as much structure in place as Microsoft e.g. there are no email alias/lists to join.
Finding the right vanpool seems to be the most difficult task of the employee vanpool system.

Another task that ties in with the initial setting up of the vanpool is to coordinate with all the other
people about logistics - where to rendezvous and at what time, who the designated driver will be,
the backup driver and who the bookkeeper will be, which vehicle they want to get (King County
seems to have a wide selection - anything from a minivan to a fully electric Nissan Leaf). King
County has a well defined structure and defined roles. There are forms and brochures that
explain these in detail and you also get a designated King County employee who will be your
point of contact to help answer any questions the group has. King County also provides training
for the designated drivers. Most of these initial setup tasks are performed and coordinated face



to face and then followed up via email. What we learnt from Leslie is that to become a
designated driver was quite difficult, King County has set a pretty high bar. King County also
provides the driver with a gas card which is accepted at all gas stations (Leslie pointed out that
ARCO is the only station that doesn’t accept it). Leon called out that since most employees
didn’t have computers, they had smartphones instead, it was difficult for them to deal with the
King County paperwork/forms from work.

Once the Vanpool is setup the overhead seems to be quite low. King County will send a
notice/reminder to the members of the vanpool when the vehicle is due for servicing. There are
specific service centers which you need to go to. King County pays for the servicing of the
vehicle and will provide a loaner car while the car is being serviced. There is very little that the
members of the vanpool have to do for this task. They need to decide on the exact date and time
of when to take the vehicle in for servicing. They usually do this via email or when they meet for
their daily commute.

One other task that needs to be performed by the bookkeeper is to log the total number of miles.
Leslie, who is the bookkeeper of his Microsoft employee vanpool, says he does this once a
month by updating a OneNote page that he maintains on his work PC. Leon on the other hand
maintained logs daily and it was quite inconvenient for him.

The vanpool that Leon was a part of ended when other members of his vanpool left the company
and Leon could no longer find people who were interested. Leslie’s vanpool on the other hand
seems to be running smoothly and they get pinged from people who want to join regularly but
end up having to turn them away because of lack of space. The difference at the two companies
can be attributed to the following -

e At Snoqualmie there is a high churn in the employees which causes the people in the
vanpool to constantly change hence you need to be constantly recruiting/finding people
which is not easy especially since there are no email addresses where you can advertise
broadly. At Microsoft the # of people is a lot more and there isn’t as much churn. Once
the vanpool is formed the frequency at which people leave/join is relatively low. The
distribution lists also make it a lot easier to broadcast.

e At Snoqualmie the incentives don’t seem to outweigh the hassle of keeping the vanpool
going. The incentives are - you don’t have to pay to park up close if you're in a carpool
and you can enter a drawing for gift cards ($5 denominations usually). At Microsoft the
employees are incentivised by the fact that they are saving gas money and saving miles
on their personal vehicles and that seems incentive enough.

Craigslist Rideshare

The users of the craigslist/public rideshare can be categorized into 2 groups based on the intent
- drivers and riders. Drivers are the folks that own the vehicle and are looking for riders to join

them on the journey primarily because they want to save money on gas. Some drivers also do it
because they have a sense of community and want to be able to help others out. Riders are the



folks that don’t have/won’t be using their own vehicle and are looking to get a ride in order to save
money.

The drivers post the details of the rides that they are taking as an advertisement on Craigslist to
look for interested riders. This task can be performed from anywhere but is usually performed
from a laptop/pc. We didn’t interview anyone who was a driver but gained significant insight by
performing the role of a driver ourselves (we posted on Craigslist for a trip from Seattle to
Olympia) and by looking at/studying other posts on Craigslist. The driver usually posts the
information/advertisement the week of the journey - usually no more than 5 days prior to the
journey. They call out their starting point, destination and a rough description of the route. They
also call out the date/dates that they are planning to leave. There is no set form/wizard to fill out -
it's just free flowing text; unless the drivers have performed the task several times or have spent
time reading other posts, there is structured way to know everything that’s useful that needs to
be explicitly called out.

The riders search Craigslist to find the ride that’s relevant to them. Again there are very basic
filters available on Craigslist and hence in order to find the “right” driver the rider has to go
through several posts before landing on the one that best matches his/her need. This task can
also be performed from anywhere. Steph who signed up as a rider for the post we had put out on
Craigslist mentioned that she usually does this from her laptop. The task is usually performed 2
days prior to the day of travel. Steph said that she usually checks no more than 24-48 hours
before the trip. The riders glean as much information about the trip as they can from the
advertisement and once they find a trip that matches their needs they contact the driver via
Craigslist.

The driver and rider will then figure out if they are indeed a match or not by using the
email/messaging service that Craigslist provides. If they are a match the driver will revoke the
posting from Craigslist. The driver and rider exchange contact information - cell phone # or email
and will then go on to coordinate the journey.

The task of coordinating the journey usually entails in figuring out the exact time of departure, the
pick up location and other details such as how much gas money etc. Steph mentioned that she
usually prefers to perform this task by texting the driver as opposed to email or phone call. Steph
also called out that she asks to be picked up at a crossroad or public location because of safety
concerns of giving her address away. The night/day before travel the driver and rider confirm that
they are each still committed to taking the journey and the next day they rendezvous. Steph
mentioned that safety was definitely something that concerned her (not enough to deter her from
seeking these rides) and mentioned that on meeting the driver if she didn’t feel “right” she would
not hesitate to abort/walk away from the ride.



Answers to task analysis questions
1. Who is going to use the system?

The users of our system are people who want to give or take rides over medium
distances. A medium distance is somewhere inaccessible or incredibly difficult by public
transportation and less than three hours. Using Seattle as a start point, tacoma would be the
lower bound while Portland or Vancouver BC would be the upper with the exception that
Spokane/Pullman would be included in our definition of medium. Our target audience is people
who would be early adopters of the system so somewhere between 16-30 years of age and a
smartphone user. Users must have flexible travel plans and will typically be people that care
about the local community / social aspects of ridesharing and about reducing environmental
impact (carbon offsets) over affordable transit.

2. What tasks do they now perform?

Since such a medium range rideshare system does not currently exist, potential users
have very limited options. They either simply drive by themselves, or attempt to find carpool
buddies. This can be done by searching their social network but the odds of that working are low
unless it is already a planned trip. Metro Vanpools provide a way to do this but require training,
bookkeeping, and four other riders. The only option for ad-hoc medium range ride matchmaking
is craigslist. Users post unstructured offers that other users search. One a potential ride is
identified, the users coordinate by text, call, or email.

3. What tasks are desired?

The key task is matchmaking. Bringing together potential riders with potential drivers.
Once a match is made, allowing both driver and rider to research each other become key for
safety and peace of mind. Communication is still necessary task in the process and a method of
providing reviews is desired so the community could self-police itself.

4. How are the tasks learned?

The interface is designed to be picked up using intuitions and behaviors learned from
other apps and the internet. Learning the tasks is motivated by necessity and the desire to find a
transit option or provide one.

5. Where are the tasks performed?

While we envision that these task should be able to be performed anywhere, contextual
inquiry suggest that they will likely happen from one of the endpoints for a route. Of the two most
likely the start point.

6. What'’s the relationship between customer & data?

All data in the system is user generated content except for location data. Some of the users will



post rides and provide data. Others will find rides and consume the data. All of the data is very
personal, tied directly to locations and behaviors of the individual users.Privacy of the data is a
very real issue in the system.

7. What other tools does the customer have?

Users could potentially use bulletin boards at work or social networks such as facebook
or twitter but these forms will likely be shown to the wrong audience for finding a match.

8. How do customers communicate with each other?

Contextual inquiry showed that text messaging is likely a preferred method for craigslist.
People setting up office pools will likely talk face to face or email. In our ad-hoc system they will
communicate through the mask of a user name in our application.

9. How often are the tasks performed?

Since the distance in focus is of medium length and someone traveling that distance
every weekday is better served by a Vanpool then these task would be performed by a user from
every weekend to twice a year to maybe once in a lifetime.

10. What are the time constraints on the tasks?

Users usually performed the matchmaking tasks two days prior to the day of travel and
continued the communication until the end of the rideshare experience.

11. What happens when things go wrong?

There are multiple shades of wrong in the system. Best case and most common, you
won'’t get a ride or a partner to ride with. Worst case and least common, you have a serial killer
to contend with. While this sounds silly, it is a very real fear or many users and specifically
current craigslisters and must be designed around.

In existing systems, a ride that falls through at the last minute leaves the rider with a bad
customer experience and they might be turned off future rideshares. Also, the customer is
frustrated about the lack of any facility to provide negative feedback about the driver. In
Catch-A-Ride, the rider would be able to negatively review a driver that fails to follow through with
a ride.

Three tasks your application will support, one each of easy, moderate, difficult (1.5
pages)

This section outlines three main tasks supported by our prototype designs and motivated by our
contextual inquiry research. A summary list of each activity and its associated difficulty is below.



The remainder of this section provides detailed paragraphs reviewing each task and discussing
a variety of implementation options.

1. List a ride - medium
2. Find a ride - hard
3. Review the driver - easy

We found that listing a ride represents medium difficulty for users. Listing a ride requires input of
both optional and required parameters ranging from departure date to destination location.
Additionally, some user preferences like allowing pets or smoking can be merged from the

user’s profile in the application. Although the quantity of input fields can be large (over 10 fields in
some of the prototyped designs pictured in the next section), the workflow to list a ride is very
linear, so users should only expect medium difficulty while working through this long task that

has few error conditions.

Catch-A-Ride’s hard task is finding a ride where we like to draw a comparison to eHarmony’s
matching algorithm that requires pages of answered questions to generate a good companion.
The wide variety of options to present available ride data is just one design consideration for this
task. For example, users could be required to answer questions such as desired arrival time
before seeing any of the rides available in the system. Alternatively, users could be presented
with all the available rides sorted by either posting date or departure date. In the alternate
example, users would access a filter panel to cull the available list down to good matches.
Finally, any good matches would further be narrowed by inspecting each individual ride’s details
where a passenger might evaluate the driver’s profile, expected route, trip cost, and eventually
contact the driver. Overall, the task of finding a ride represents the most complicated workflows
within our application.

Reviewing a driver and other users within Catch-A-Ride is a surprisingly easy task given its
benefit to passengers hungry for assurances of safe, reliable ridesharing. Reviews can be
conducted when the driver initially picks up the rider, during the trip, or even prompted by
followup email or notifications pushed to the application hours following the ride. The user's GPS
location data could be a valuable confirmation that the trip actually occurred. Logistically, users
might be able to navigate to the review submission form from a history of completed trips if a
passenger forgot to submit a review during the trip. Our interface allows users to submit zero to
five star ratings on dimensions of the trip such as overall experience, driver, car, and route. The
interface would also support freeform text for any additional comments. Since users are
generally familiar with submitting ratings at e-commerce sites or satisfaction surveys, we feel
that submitting reviews in Catch-A-Ride would be an easy task. Note that we do assume the
existence of external, long-lived accounts, such as those provided by Facebook APIs or written
natively within the application.

Finally, the application supports a menu system allowing users to start each of the primary
tasks. We did not initially identify a menu system as a core task, but its implementation options



make it a notable addition to the discussion. For example, a tab navigation system might default
to the ride offer form as soon as the user opens up the application. Alternatively, the user could
see several buttons to start each task from a main menu. Another option is a dashboard that
displays quick actions associated with a couple of the user’s upcoming rides or previously
finished trips that need reviews. These menu system options are explored below in our initial

interface designs.



Storyboards illustrating initial 3 interface designs (mostly images)

Our team prototyped 3 initial interface designs to facilitate the core tasks of finding a ride, posting
a rideshare, and reviewing a driver. This section includes photos or scans of each design’s core
tasks, as well as brief comments to note design choices.

Note that each design and associated commentary text is on individual pages following this
page.



Design 1 - Find a Ride flow. Users see a list of available rides sorted by departure date.
Clicking a ride, such as Seattle -> Olympia prototyped below, shows a detail screen that
includes profile information about the driver. Clicking Filters gives the user keyword and date
search.




Design 1 - Review flow. Users would reach this form by following a link emailed after the
rideshare was finished.




Design 1 - Offer a ride flow. The left view is the main screen when the application initially opens.
Clicking next step opens the right view. Notably, this prototype assumed that users had to
re-enter their email and photo on each submitted ride offer. After reviewing this prototype, we
decided to assume that reusable user profiles existed and we dropped input for driver’s email
and photo from this workflow.




Design 2 - Ride offer flow started by selecting ‘Drive’ at the top left of the home screen. As
incremental information is submitted, users see a map of the starting location (top right), details
such as MPG of the car used for the drive (bottom middle), and a full route overview confirmation

before submitting the offer (bottom right).

fu'-"'ﬂ P{]
I Rowmma b ¥y ME
i Eu.‘ﬁ ilt ""f"l ?
beaet 700 o T ]
LI -

4"“‘*5 L od:l-p."ﬂ

Iﬂ. ke s’ﬂ.-\l.-it
Wik wpal £,
Y realy Baf

L'ﬁ;rrj

191 g, CHY

,_\ R
'-'kl?'!.. wmr’.‘ﬂ




Design 2 - Find a ride flow. After entering departure info (top middle), users see a map
confirming the starting point (top right). The matching information takes destination info (bottom
left), and displays a list of appropriate available rides (bottom middle). Clicking an individual ride
shows a detail screen (bottom right).

Drive Ride, My bl e |:m-f;,
F‘r"‘lhT

r ) "
Up comin _|__"]_‘F{ garen” |

Leam s 7i00=7: Whin
Ea-"\-a\. =

-'q‘.g gl pa C'IJ"'F&‘I"

%4
iy & 5"'”. b e

‘:g Bk mpab o
WY feady P

Whie are e ’ , o 1. .""___ s
; L wih WNTE mpn e MR
"
_II}_'%-L._._“I —— = i LLE PETY 0\._1& i
i Gnn? Lot ) animl Rae / ] ]ﬁa
.lr“y“.s L,.-g L Paban 'I?:-: ! _.._5 ; : 1
e ey —— ez P40 AP | sk .
it N Ay S b R

[im, ”.ln'ri'.J".«' (osr g™
L

T

o
| it TP
*JG'HH




Design 2 - Review flow. The right screen shows information such as ideal route while the ride is
in progress. Users could rate the driver by clicking the appropriate number of stars.




Design 3 - Ride offer flow. Login screen shows integration with long-lived user accounts.

@Cﬁ&vo. o o '?Qae e

gam ':m@mw.u w

[SEr
=] =l
kel

@ = &

[ cavers - Ao

oy Detwils et

® Ak “ohver M";\" .

—_—

&gswﬁ‘ﬂ‘
@ it SO SR

@ Grive o wWha



Design 3 - Ride offer / Find ride flow. Advanced filters are shared with the find a ride workflow to
support preferences like smoking allowed, luggage capacity, and availability of in-route stops to
pick up and drop off riders.

Hive o mde - Wlll' @

CATOL- b - ik ﬁ_j CRTOL A R.‘E,'i Fa
Mp— i e
— ettt &
e 5 Giive ov Yake hr title
Guve ECIPAL t-;\'ut.;h\u. thr Rl T e
[ [ yidup 'h sh't
[ 3 SeATTLE
0 Porudk - 1P oY M’gj_ :
St bl = TR T
D:m pew dole LD ﬁasiur_t,]
e —e
-
desciphon
e 3 Y sen DMB
ok Ao
’ ::\’.l:.. M“;\“... AO-‘. W o 50-1
’n-? 11,-, wal. -

>
Dare
\1uu.‘|‘ ?D‘t Whos
Leen GuCCE‘S%\Aﬂ-“\
?ulrka\ucl
e ducle e Yo vie2 o5
Nrave 'S
o mde L
d Modw s
-

NoTE - & e m“-.,,a ‘V\'ch_. Nb M#\N.-M—
h‘f"“‘f:(mﬁ‘w ably 4ot edit’wde @




Selected Interface Design (2 pages)

Part a.

Which design & reasoning for choice

We chose to go with Keith’s design skeleton (Design #2 above) and bring in a couple features
from the other 2 designs.

We chose Keith’s design primarily because it was a minimalistic wizard that steps the user
through each task and had the extensibility to provide the user with a boatload of extra settings
(for advanced users). It also made use of the GPS functionality, which all smartphones now
have inbuilt, that showed/shared the planned route and provided live tracking throughout the
journey. This helps address the safety concerns that all ride-sharers have while partaking in
these types of journeys.

From the other 2 designs we pulled in these features -

Part b.

Initial sorting of available rides presents a list interface with earliest departure at the top
and latest departure at the bottom. This choice was made because our user research
showed a preference for searching for a ride that leaves within the next 48 hours.
Advanced filtering for both posting/listing and finding a ride allows the users to specify
preferences such as Gender, Age group, Smoking preferences etc. We believe this will
gain help with the safety concerns that users tend to have.

Functionality summary (what you can do with it)

Main status screen to present the state of the system and offers start points for the
separate tasks/flows.

Ride screens to see the state of a specific ride in full detail. These screens are
contextual and change based on the state of the user, usually detected by location
information on the user (about to get picked up, on the way to get someone, in ride, post
ride, etc).

Ride screens must also provide a messaging mechanism for masked communication.
Ability to list cars you own and can offer for rides.

Ability to list a ride. This included setting start and end points, time requirements, car
details and other specific preferences.

Ability to search rides. This includes again setting start and end points, and time
requirements. There must also be a faceting feature to the search to filter drivers who do
match users requirements. Sorting is also important but will default to time leaving first in
our designs.

Profile and rating information for each user. The system also provides information about
the number of rides, and distance travelled by each user. This helps alleviate the safety
concerns most riders have about travelling with a stranger.

Ability to provide feedback once the trip is complete



Feature that would be needed but are not represented in the mocked system:

e System for automated payments or for suggesting price. While many do carpool to save
money, solving the money exchange problem is only important if people are actually
carpooling. The contextual inquiry showed that a system without this is viable, making
this a “nice to have” but not necessary to solve the problem.

e Profile screens or profile signups. It is assumed that all users once into the mocks have
a profile created and that it is unique to them individually.

e Inbox system or messaging outside the context of a single ride. While such a feature
would be great to help create recurring carpools, that is not the use case in question and
would be better served with a vanpool.

c. User interface description (how you use it, referencing sketches)



The main screen provides a jump off point to the three
major use cases of the system. Those being find a ride, list a ride,
and take a ride. These three are all larger buttons as they are
intended to be used the most. The drive and ride buttons at the top
will take the user into the “list a ride” and “find a ride” flows
respectively. The “See Next Ride” button shows the details screen
for the next ride to be taken. The middle of the screen is a
scrollable list of all rides the user is involved in and clicking on any
takes them to the details view for that ride.

Task 1: List a Ride

The “list a ride” flow has a set of information it needs to get
from the user. The user is walked through a wizard of sorts
where each required piece of information is asked and
confirmed. There are back and next buttons on each screen to
indicate that nothing is final yet. These switch to yes and no’s
on the confirm screens. The required information to gather is
where they are leaving, where they are going, which car they
will take, when they need to be there, and their timing flexibility
for the ride. Anytime the user inputs one of these, a status
screen confirms the input so as to reduce the need for backtracking. Once all required inputs are
collected a final summary screen is presented to the user. It explains their route, their time
windows, confirms the car choice and makes sure the user knows what is happening next. The
next button is replaced with confirm to indicate that this is the final step.

Also an advanced options button is available to allow the user to specify things optional to
the system but required by the user. These are all defaulted to be
very open so as to allow for the largest pool of riders but can be
tightened at the users request. Once the user selects confirm they
return to the main screen where their newly listed ride is there for
them to see.




Task 2: Find a ride -

Start from the Main screen of the application - which shows you the list of current upcoming
rides that you are participating in (blank if you have none). Click on the Ride button - top right
hand side

This shows a list of the posted rides in your area (which is automatically detected from your
current location) - you have the option to change the starting location. The list is sorted by
earliest departure at the top and latest departure at the bottom. There is a button at the bottom
for additional filters. Click the Filters button.



The advanced filters section allows you to specify details like departure date (note it's a drop
down in the paper prototype but we plan to change it to a slider control) and time you want to
leave. The minimum rating of the driver. If the driver needs to be affiliated to a group that you're a
part of (the user is able to associated themselves with various groups e.g. UW student, through
their profile settings). Whether or not you're comfortable with the driver being a smoker/not. You
can also specify your preference for the gender of the driver, age group of the driver and # of
people you’re willing to have in the car.Click Save on this page.

Now you’re back to the postings that match your criteria. You can now select the posting that you
want to get more info on and view the details of the offer e.g. driver’s profile, rating, affiliations,
actual route that the driver intends to use, vehicle info etc.



You can hit Confirm to select this ride or Back to view more rides. Hitting Confirm takes you back
to the first screen of the app and now this ride will show up in the list of active rides.



Task 3: Submit a Review

In the details screen for a ride are several important features. It
communicated the status of the trip, shows the route, and
provided the feedback mechanism. The map should also
include the current location and track with the user. The
feedback is simply a set of empty stars next to various metrics.
On clicking a star the rating is not saved. The ratings can be
adjusted but do not all need to be filled out. The text is free form
for the comment and is submitted on clicking rate. From then
on the rate is disabled as there is logical “next” screen. The list
of information presented should not be considered exhaustive
as an actual implementation would no doubt reveal that much
more information is available to be presented to the user. This
is however a minimum feature set that at least needs to be
show.




Three scenarios corresponding to your tasks

1. Sarah wants to ride to Olympia, but her friend is scared about craigslisters. Sarah finds
out about Catch-A-Ride and opens the app to see what it is all about. Once signed in she see
the main screen and clicks “Ride” in the top right corner to see about finding one. The initial
screen shows lots of rides radiating out of seattle but all of them are for today. She clicks filter
and restricts her results to those leaving on friday which is two days from today when she plans
on going. She clicks ok and sees a much better list of available rides but most of the first couple
are going north. She opens the filters again and fills in the address of her friends house she is
trying to get to. Now there are only three matches. She clicks on the one with five stars. It all
sounds reasonable for the pick up and drop off times. The route is clearly displayed. What
makes her feel the best though is being able to see the drivers profile. He seems to be a
University of Washington alumni and works at Microsoft. He has given many rides before and all
the reviews look good. She decided she feels comfortable with the idea and clicks confirm. She
is taken back to the main screen and sees the ride listed on the main page. She tells her friends
about the positive reviews for the driver and her nerves are settled about the situation.

2. Gerry the ride giver likes the social aspects of ridesharing and expects to drive to
Portland on Friday. He opens Catch-A-Ride because he would like having someone to talk to
and getting HOV access down I-5 wouldn’t hurt either. He hasn’t used the system for a while so
his home screen is empty as he clicks on the “Drive” button in the upper lefthand corner. He is at
home so clicks “Use Current Location” since he plans to leave from home later. The next screen
confirms it found his address alright and he clicks “Yes” to continue. When asked where he is
going, he types in the address downtown he needs to get to for his meeting. He confirms that
one as well and is then asked which car he is taking. He sees his car still listed from last time
and selects and confirms it. The system is now asking when he is going and when he needs to
get there. He picks the date and enters the time fifteen minutes before his meeting so he knows
he has time to walk. Gerry is a morning person and is willing to get up quite early if it means HOV
access. He selects 5am as the earliest he would be willing to leave. He clicks next and is
presented with a summary of all his choices. He sees a final options list and notices he can
restrict the number of passengers. Since he really only wants HOV access and doesn’t want to
drive all over town in the morning he lowers the available seats to just one. He confirms that, the
interface now showing his one seat restriction rather than his 4 his car could seat. He clicks
confirm and is taken back to the main screen. His ride he offered is sitting there in a summary
form. Now he sits back and waits for someone to find him.

3. Sarah found Gerry’s rideshare on Catch-a-Ride. It worked out awesome! He picked her
up right on time, they used the carpool lane and the app tracked their progress every step of the
way. She has been watching the ride status screen during the trip and notices they are actually
getting into Portland ten minutes early. He drops her off and with her extra time before she meets



up with her friend she takes some time to submit a review for Gerry. Without changing windows
she rates him five stars, rates his car five stars and writes in the text box, “super clean car,
a++++™* will catch-a-ride again!” and clicks submit review. She closes the app and goes about

her day.



Appendix: Any additional sketches of important screens

The application dashboard (left) shows timely information about upcoming rides. During a ride,
the status screen (right) allows users to rate the driver, car, route, as well as share a real time
map with friends.






















