CSE 589 Partll

When you start on a long journey, trees are trees, water is
water, and mountains are mountains. After you have gone
some distance, trees are no longer trees, water no longer
water, mountains no longer mountains. But after you have
fraveled a great distance, tfrees are once again trees, water
/s once again water, mountains are once again mountains.

-- Zen teaching

Readings

Dynamic programming

Skiena, chapter 3

CLR, chapter 16 (especially 16.1)
Graph algorithms

Skiena, chapter 4

CLR, chapters 23-26

Two basic paradigms

Divide and conquer
typically, split problem in half, solve each half,

combine results to get full solution

Dynamic programming

« characterize structure of an optimal solution

« recursively define value of an optimal solution

« compute the value of an optimal solution in bottom-up fashion
« construct an optimal solution from computed information

Break problem down into smaller, more easily solved pieces.

Example DP Problem:
Matrix Chain Multiplication

Given a sequence A,, A,,..., A, where matrix A, has
dimension p, ; x p;, fully parenthesize the product
in a way that minimizes the number of scalar

operations.
Matrix-Multiply(A,B) A pxq B gxr
for i =1torows[A]
for j = 1to columns[B]
Cli,j1=0;
for k =1to columns[A]
Cli,j1=C[i,j] + Ali kK]*B[k,j]

result: C p xr

running time: pqr

It realy does make a difference

AxBxC where

¢ Ais 10 x 100

« Bis100x5

« Cis5x50

((AxB)xC)

« 10x100x5 + 10x5x50 = 7500
(Ax(BxCQC)

« 10x100x50 + 100x5x50 = 75,000

Optimal parenthesization

How would you figure out the optimal
parenthesization?

Dynamic Program for Matrix Chain
Multiplication

m[i j] = minimum number of scalar multiplications
needed to compute A |

Solution = m[1,n]
How to compute m[i,j]:

minic i { mli k] + mk+1,j1+ piypep} i<j (%)

Compute value & solubon bottowm up

S e T
+hen m[i,iet) A%
‘H’W.ﬂ m[-')'n,;'l VErvEn-
miy,x]
w2 m{amd /K
mftpd w33} ~aud

\w\[‘\‘-) M(ﬁ |‘1 "\(.?'l;] "‘{“’H]
RUNNING TIME:

:#: levels B
s e
lewens pr bl

DP for Matrix Chain Multiplication

For i:= 1 to n do

ml[i,i] = 0;
For j := 1 ton
for i := 1 ton

compute m[i,i+j] using recurrence (*)

R emarks

* Optimal substructure within optimal solution is
hallmark of applicability of dynamic programming

« property of overlapping subproblems is another
hallmark of applicability of DP

« need to be careful about order in which subproblems
are computed

Example: Approximate S tring Matching

P -- a pattern string

T -- a text string

Edit distance between P and T is smallest
number of changes to transform T into P,
where changes are:

¢ Substitutionkat.... ---->cat....

« InsertionCt.... ---->_..cat....

e Deletioncaat.... ---->....cat....

Dynamic Program for AST

D[i.j] = edit distance between P[1..i] and
segment of T ending at j.

5 \| - n
v \
G T R TN)

\ ™)

D[I“.sl match do net match
PL) e Th] Pl TLD
! <
3 P[]
ﬁ;?n ['ta text
fext,
D) NGRS DLy DY+

For i:= 0 ton do DI[i,0] = i
for j:= 0 tom do DI[O0,]j] = j;
For i := 1 ton
for j := 1 tom
D[i,j] = min(D[i-1,37-1] + matchcost(P[i]l,T[j]),
D[i-1,j] + 1, DI[i,j-1]1 + 1)

T orecover actua alignment

Walk backwards through D[i,j] table starting at
D[n,m].

At each cell, look at costs of three neighbors, to
reconstruct choice made to get to goal cell.

Direction of backwards step determines if it was
an insertion/deletion or match/substitution.

b o dae fe fapiahen ox ko0

01 -2 3 u5 607 8.9 A0l a2

ap [E0 o AR Teh B TN () S e D)
bile2 A T2 3 4 Bl 7 Sisiis o RIS g e D
on |5 3[R w920 Sit A ba e 7h R Ess0 HN 01
dibea 8. o0e iy 20 w34 15 6 95 SRR L s oM ()
e 750|032 5 I 520 o3 7 SR N6 NgE AR e,
f8l7268] 351~ 47930 1 DR, 3 S5 6 7880
g5l 7| 685 314 R30S 2w Tt S RA g ke p 17
hil- 8717 685 %423 2ass 3 GDESae -4 SEEEG
PR 0 8e 57 76, B e = dueian e D5l Bk N
oo A0 59, 85-17-1 .68 S 52 SO s Be i &
ko [<17 (210 TR0+ Bi7 Tepiil6 a6l 5T A 4 eBiE Sl
1512112 110279 28" 7. 7" 7¢ 6245, 5h gl O

Figure 3-4. Example dynamic programming matrix for edit distance computation, with
the optimal alignment path highlighted in bold

—

W

Dynamic Programming S ummary

. Formulate answer as recurrence relation or recursive

algorithm
Show that number of values of recurrence bounded by poly

. Specify order of evaluation for recurrence so have partial

results when you need them.

DP works particularly well for optimization problems with
inherent left to right ordering among elements.
Resulting global optimum often much better than solution
found with heuristics.

Once you understand it, usually easier to work out from
scratch a DP solution than to look it up.

Dynamic Programming Problem
Surface Reconstruction

P={po. P1,s Prt: Q={q0, Q1.0 G}

planar, parallel polygons in 3D
A tiling of P and Q is a set of triangles (tiles) of the
form {p;, pi1. q;} or{q;. g .pi}.
Cross edge: tile edge with vertex from each polygon
Tiling must satisfy 2 properties:
« every edge of each polygon is side of exactly one tile
« every cross edge is a side of 2 tiles

Dynamic Programming Problem
Surface Reconstruction

Problem: given P,Q, construct tiling of minimum
surface area (the sum of the areas of all the
triangles in the tiling)

(o]

o~
[

@) (b)

FIGURE9.3 () A pair of contours ob(;nined from the cerebral cortex of the human brain. The two con-

Graphs

A set of points (“vertices") and a set of lines
("edges") connecting pairs of points.
Examples:

« airline flight map

e communication networks

« precedence constraints on the scheduling of jobs

« flow networks

x :
u v w N w
y v
w u
® ® ©
Figure 12.1 Three graphs. (a) and (c) are undirected graphs, (b) is a dirccted
O raph. The placement of the vertices on the paper & immatctial when we

draw graphs; for example, (a) and (c) are in fact depictions of the same
graph.

Figure 12.2 A map and its associated undirected graph. Each region is
represented by a vertex, and an edge joins each pair of vertices that
comrespond to bordering regions.

Definitions

An undirected graph is a pair (V,E), where
Vis a finite set, and E is a set of
unordered pairs (u,v), where u different
from v and both are in V.

Terminology: If (uyv)isanedge (i.e.,inE)
* uand v are adjacent; vis aneighbor of u

A directed graph is a pair (V E), where V is
a finite set, and E is a set of ordered pairs
(u,v) (udifferent fromv, both in V).

R epresenting graphs for algorithms

Adjacency matrix A[0..n-1, 0..n-1],
where V={0,1...., n-1}.
Alij1=1if (i,j)inE
0 otherwise

Adjacency lists:
L[O..n-1] array of lists where L[i]={v | (i,v) in E},
the set of neighbors of i.

1 2 3 4 5
i 01 0 0 1
Lo
01 01 0
L0110 1
‘ L1 01 o0

Figure 4-4. The adjacency matrix and adjacency list of a given graph

More Definitions:
Assumen= M| e=E|
The size of the graph is n+e
« An algorithm running in time O(n+e) has just time
to inspect each vertex and edge.

A path in G is a sequence (vg,vy....,v,) of
vertices such that (v;, v,,) in E, for all 0 <=
i < k. Itslength is k and it is a path from
Vo to v,
A cycle is a path such that vj = v,.

An undirected graph is connected if and
only if there is a path between every pair
of vertices.

Tree (undrected)

An undirected graph which is:
« acyclic, i.e., has no cycles

« for every pair of vertices u,v, there is a unique, simple
path from u to v

« deleting any edge yields a disconnected graph
Often orient the edges of the tree, so each
vertex (except the root) has unique parent

More definitions

A subgraph of a graph 6=(VE) is a graph 6'=(V' E')
such that V' is contained in V and E' is contained in
E.

A connected component of an undirected graph G
is a maximal connected subgraph of G.

Graph S earching

Goal: want to traverse the edges of the graph and
visit each vertex reachable from the starting
vertex.

Two important traversals

* breadth-first search

« depth-first search

Can you determine if there is a path from v to w in
linear time?

Breadth First Search (BFS)

BreadthFirstSearch (graph G, vertex v):
Queue Q; (initialized empty)
for each vertex w do Encountered(w) = false;
Encountered(v) = true;
Q.Enqueue (v) ;
while !Q.IsEmptyQueue() do
w := Q.Dequeue ()
Visit (w)
for each neighbor w’ of w do
if !Encountered(w’) then
Encountered(w’) := true;

Q.Enqueue w’)

(@) (b)

Figure 12.5 An undi d graph hed by (a) breadth-first and (b) depth-
first search. In each case the search starts at the vertex labelled 1; the
labels in the vertices show the order in which they are first encoun-
tered. (For breadth-first search this is also the order in which they are
Visited. For depth-first search it is the order in which they are PreVisited;
the PostVisit order is S, 4, 7, 6, 11, 10, 9, 13, 12, 8, 3, 2, 15, 14, 1)

The arrows, which are not part of the graph, illustrate edges that were
followed to previously unencountered vertices. Only the connected com-
ponent containing the starting vertex is searched.

BFS Analysis

Running time:

« every vertex w is enqueued only once (because
Encountered(w) is true thereafter) => only dequeued and
visited once.

« Every edge is looked at tiwce.
« => total running time is

BFS Analysis

Running time:
« every vertex w is enqueued only once (because

Encountered(w) is true thereafter) => only dequeued and
visited once.

« Every edge is looked at twice.
« => total running time is O(n+e)

Consequences of BFS

Can determine if there is a path from v fo w in
O(n+e). How?

Consequences of BFS

Can determine if there is a path from v fo w in
O(n+e). How?

Run BFS(v).

If Encountered(w) is true, then there is a path.

Otherwise, there isn't.

Consequences of BFS

Definition: The distance between two vertices v
and w is the minimum length of any path from v to
w, or infinite if there is no such path.

Can determine the distance from v to w in O(n+e).
How?

Breadth First Search (BFS)

BreadthFirstSearch (graph G, vertex v):
Queue Q; (initialized empty)

for each vertex w do
Encountered(w) = false; d(w) = infinity;
Encountered(v) = true; d(v) = 0;
Q.Enqueue (v) ;
while !Q.IsEmptyQueue() do
w := Q.Dequeue ()
Visit (w)
for each neighbor w’ of w do
if !Encountered(w’) then
d(w’) = d(w) + 1;
Encountered(w’) := true;
Q.Enqueue w')

Spanning Trees

Definition: Let 6=(V E) be a connected, undirected graph. A
spanning tree of & is a subgraph G' of G containing all the
vertices of G, such that G' is a tree.

Can find a spanning tree in O(n+e). How?

Breadth First Search (BFS)

BreadthFirstSearch (graph G, vertex v):
Queue Q; (initialized empty)

for each vertex w do Encountered(w) = false;
Encountered(v) = true;
Q.Enqueue (v) ;
while !Q.IsEmptyQueue() do
w := Q.Dequeue ()
Visit (w)
for each neighbor w’ of w do
if !Encountered(w’) then
Encountered(w’) := true;
Parent (w’) = w;

Q.Enqueue w’)

Depth-First Search
uses stack instead of queue

DepthFirstSearch (graph G, vertex v):
for each vertex w in G do
Encountered(w) = false;

RecursiveDFS (v) ;

procedure RecursiveDFS (vertex v):
Encountered(v) = true;
PreVisit (v);
for each neighbor w of v do

if !Encountered(w) then
Parent (w) = v;
RecursiveDFS (w) ;
PostVisit(v);

Figure 12.7 Depth-first search in an undirected graph. The search begins
at the vertex labelled 1, and the vertices are labelled in the order they
are encountered during the search. Followed edges are drawn with heavy
lines and skipped edges with light lines; the arrows on the followed edges
indicate the direction in which the edge was followed. When the skipped
edges are deleted, the result is a tree; if vertex 1 is taken as the root of
the tree then skipped edges join only ancestrally related vertices.

DFS Analysis

Running time: O(n+e)

« call Recursive DFS on each node exactly once (afterwards
Encountered is true)

« each edge is examined twice (once from each endpoint)

assuming adjacency list representation of graph

Consequences of DFS

Can determine if there is a path from v to w in O(n+e).
Can find a spanning tree of a connected graph in O(n+e).

Can be used to detect if graph is a tree or if it contains a
cycle.

Can determine if the graph is connected.
Can find the connected components of the graph.

Mos t important property of DFS on
undirected graphs

Every edge is either a tree edge or an edge
between an ancestor and a descendent in the
tree.

Consequences of DFS (cont.)

Definition: a topological ordering (sort) of the vertices of a
directed graph is an order vi,..., v, such that there is no edge
(vi.v)) of G with j<i.

Application: tasks to be performed sequentially, with
precedence constraints: if the pair (T, T) is a constraint
then task i must be performed before task j.

Goal: find ordering (schedule) s.t. all constraints obeyed.

DAG non-DAG

Figure 4-9. Directed acyclic and cyclic graphs

Using DFS to get topological sort:
modify main procedure to perform DFS from every vertex of
G.

During PostVisit assign a number to each vertex (starting at
n, and decrementing each time.)

Modify DFS to solve topological sort problem

DFSTopoSort (graph G):
for each vertex v in G do
Enc(v) = false;
for each vertex v do
if Enc(v) == false then RecursiveDFS(v);
nextnumber := n;

procedure RecursiveDFS (vertex v):
Encountered(v) = true;
for each neighbor w of v do
if !Encountered(w) then RecursiveDFS (w) ;
Number (v) := nextnumber;

nextnumber --;

Consequences of DFS (cont.)

Lemma : Suppose run DFSTopoSort on graph 6 which is a
DAG. If Number(v) < Number(w), then (w,v) not in E.
Proof:
Number(v) < Number(w) => RDFS(w) completes first.
At that time, either:
Enc(v) = false ----> no edge (w,v) ; search of w would have followed it.

Enc(v) == true ----> exploration of v in progress => path from v to w; edge (w,v)
would imply cycle.

Other Applications of DF S

Finding articulation points in a graph.

Finding the strongly connected components of a
directed graph.

Planarity testing.

Ve

Figure 4-10. An articulation vertex is the weakest point in the graph

Single-S ource S hortest Paths
(Dijkstra’s algorithm)

Using BF S, solved problem of finding
shortest path from s to t.
What if edges have associated costs or
distances? (BFS problem assumes edge
costs are all 1.)
Assume each edge (u,v) has nonnegative
cost c(u,v).
Define the cost of a path = total costs of
all edges on path.
Problem: Find, for each vertex v, the least
cost path from s to v.

|dea of Dijkstra’s Algorithm:

Maintain:
« Dist [0..n-1] where Dist (v) is the cost of best path
from s to v found so far, and

» U, set of vertices v for which Dist (v) is not yet
known to be optimal.

Initially:
« Dist (s) = 0; Dist (v) = infinity for all v other than s.
s U=V.
Ineach step, remove that v in U with
minimum Dist(v)
update those w in U s.t. (v,w) in E and
Dist(w) > Dist(w) + c(v,w).

Dijkstra’s Algorithm

Assumption: c(u,v) = infinity if (u,v) notin E.

DijkstraShortestPaths (directed graph G, vertex s):
Set U (initialized to be empty)
for each vertex v in G except s do
Dist(v) := infinity
U.insert(v);
Dist(s) := 0; U.insert(s);
repeat |V| times
v := any member of U with minimum Distance
U.Delete(v);
for each neighbor w of v do
if U.contains(w) then

Dist(w) := min(Dist(w), Dist(v) + c(v,w));

Figure 12.9 An example of Dijkstra’s algorithm. (a) A directed graph, with
a cost on each edge. We wish t-cost path from S to each
other vertex. (b) The distance to e xcept S) is tentatively
set to oo. (Tentative distances are

least tentative distance is S, 50 it

by shading the vertex. The tentati
updated. (c) Now vertex
he t

7 is updated from oo to 4. The distance via B to A
er than the tentative distance of A, 50 no update is

2 is now removed from U (C could have been selected
nd the distance to A is updated. The next vertex to be removed
rom U will be C' (Problem 32).

Why is this algorithm correct?

Theorem: At the termination of the algorithm, Dist(v) is
the length of the shortest path from s to v for each
vertex v of 6.
Proof: by induction on |V-U.

Inductive hypothesis: Let [V-U|=k.

« for every vin V-U, Dist(v) is length of shortest path from s to v

« the vertices in V-U are the k closest vertices to s.

« for every vin U, Dist(v) is the length of shortest path from s to v
that only goes through vertices in V-U.

At all imes, for al v, Dist(v) is the length of
shortest path from s to v that only goes
through vertices in V-U

Base Case: U = V-{s}

Induction Step: Suppose true for first k steps. The
SP to the (k+1)st closest vertex, say w, can go through
only vertices in V-U, otherwise, there would be a closer
vertex. Therefore, selecting the min => add the k+1st.
Say w is added.
New Dist value for a vertex x is min of old Dist value
and Dist(w) + c(w,x)

Run Time Analysis

Underlying data structure: priority queue
Stores set S such that there is a linear
order on key values.

Supports operations:

« Insert(x) -- insert element with key value x into set.
e FindMin() -- return value of smallest element in set
* DeleteMin() -- delete smallest element in set.

and usually:

* Lookup(x)

« Delete(x)

Maost priority queue implementations

Can implement all these operations in O(log n)
time for sets of size n.

=> Running time of Dijkstra's algorithm:
insertions:

deleteMins:

lookups:

modifying Dist values:

Running time of Dijkstra’s algorithm:

n insertions: O(n log n) time (actually O(n))
h deleteMins: O(n log n) time
e lookups: O(e log n) time (actually O(e))

e Dist value mods: O(e log n) time
Running time: O((n + e) log n))

Can also do O(n?). Better for dense graphs

o7

Minimum S panning T rees

Spanning tree of G -- subgraph of & that has
same set of vertices as 6 and is a tree.

MST of weighted graph G -- spanning tree of G
whose edges sum to minimum weight
greedy algorithms give optimal solution
o @
o
®

..oo' /

Kruska’s MST agorithm

Assume G is connected.

Idea:

« Sort edges in increasing order of cost
« Initialize tree T to be empty

« For each edge e in sorted order

« If T U {e} does not contain a cycle, add eto T;
* outputT;

Correctness

Theorem: Kruskal's algorithm outputs an MST
Proof by induction

that at all times T is a subset of an MST F.
Let e be the next edge chosen by Kruskal.

Claim that T U{e} is a subset of an MST.

If e notin F, lete’in F connect two components of T.
Then F - {e’} + {e} is an MST.

(a) (b)

Figure 12.8 Illustration for the correctness proof of Kruskal’s algorithm.
(a) The graph (V| E’) and the new edge e. Each oval represents a con-
nected component of (V, E’). (b) The path in F' from u to v, which must
contain an edge e’ between distinct connected components of (V, E’).

The set F’ contains all of F' except for e’, and since it also contains e
there is a path P’ in F’ from v’ to v'.

Toimplement, use Disjoint S et ADT

Problem: maintain information about a collection
of sets 5;,...,.5, that is dynamically changing
through merges (unions)

Operations

* MakeSet (x): create new singleton set consisting of x
e Union (S,T): replace sets S, Thy SUT

* Find(x): return “name” of set S such that x is in S.

Kruskal’s Algorithm
with Disjoint S et ADT

KruskalMST (undirected graph G):

set of edges in MST
Set T;

(initialized empty)
components := n;

// set of edges in tree
// number of connected comps of (G,E’)
Sort edges

for each vertex v of G do MakeSet (v);

while components > 1 do // process next edge in order

next edge in sorted order;
U := Find (u);
W := Find (w);

(u,w) :=

if (U different from W) then
Union (U, W) ;
Insert((u,w), T);

components := components - 1;

return T;

[eCleCs

Bestresult

Theorem (Tarjan, 1975): There is an
implementation of the Disjoint Set ADT such that
the worst case time to perform any sequence of n-
1 weighted Unions and m >= n Finds is Theta(m
a(m,n))

om,n) is the inverse Ackermann function

2

afm,n) <=4 foralln« 22" (17 times)

Run-time of Kruskal’s Algorithm

Sorting:
Find:
Unions:

Run-time of Kruskal’s Algorithm

Sorting: O(e log e)
finds: e
unions: n-1

Grand total: O(e loge + e a(e,n))

Modeling the Problem

An art, but key to applying algorithm design
techniques to real-world problems.

Most algorithms designed to work on
rigorously defined abstract structure.

Y our turn!!t!

To try your hand at formulating problems as
graph problems, and, if possible, using one of
the algorithms we have discussed to solve
them.

Problems

1. Speech recognition problem -- distinguishing between words
that sound alike (e.g. to, two, too). You're given a list of
words and the likelihood of transitions between them. For
each word spoken into the microphone, your program
determines a set of words that sound like it. How might you
figure out what sentence was spoken?

2. Given a set of processes that need to be scheduled, and
dependencies that tell you which processes need to be
completed in order for a given process to execute, how would
you schedule the processes so as not to violate any of the
dependencies?

3. How would you find your way out of a maze?

coOel

Problems

4. Network reliability -- how would you determine if there is a
single point of failure in your network?

5. In an optical character recognition system, a method for
separating lines of text is needed. Although there is some
white space between the lines, problems like noise and the
tilt of the page make the separation difficult to find. How
would you go about doing line segmentation?

6. DNA sequences -- given experimental data consisting of small
fragments. For each fragment f, know that certain other
fragments are forced to lie to the left of f, certain
fragments forced to lie to right, and rest either way. How do
you find a consistent ordering of the fragments from left to
right that satisfies all the constraints?

Problems

7. Multicast -- How would you decide what routes to use to send
a message to a subset of the processors in your network?
You can assume that you have information about the
bandwidth and congestion on the various links in the network.

8. How would you design natural routes for a video-game
character to follow through an obstacle-filled room?

9. How might you test if a certain set of conditions in your
program can cause deadlock? For every pair of processes, A
and B, it is possible to determine if A might ever wait for B.

10. Circuit simulation -- Given a circuit layout and input/output
information for each gate in the circuit, (where its outputs
go and where its inputs come from) how would you schedule
the simulation of the gates in the circuit?

>y

