CSE 589 Part IV

More than any time in history mankind faces a
crossroads. One path leads to despair and utter
hopelessness, the other to total extinction. Let us
pray that we have the wisdom to choose correctly.

-- Woody Allen

R eadings

Skiena, Section 8.2.6

“Linear Algebra and Its Applications”, by
Gilbert Strang, by Gilbert Strang, chapter 8

"Linear Programming”, by Vasek Chvatal

"Introduction to Linear Optimization”, by
Dimitris Bertsimas and John Tsitsiklis

Linear Programming

The process of minimizing a linear objective
function subject to a finite number of linear
equality and inequality constraints.

Example applications:

« airline crew scheduling

« manufacturing and production planning

« portfolio selection

« telecommunications network design

"Few problems studied in computer science have
greater application in the real world."

Big Bucks!

"American Airlines employs more than 25,000 pilots and flight attendants
to fly its fleet of over 600 aircraft. Crew cost is over 1.3 billion dollars
per year is second only to fuel cost. In its effort to better utilize crew
resources AA spent about 6000 hours of CPU time during 1989-90
running its crew-pairing code... Estimated savings generated by running
this code during the past 5 years are in excess of 20 million dollars per
year.

A crew pairing is a sequence of flights that starts and ends at a crew base
and typically lasts 2-3 days. A crew member works 4-5 pairings per
month. The most important part of efficient crew utilization is making
up pairings that cover all flight legs and minimize excess cost. This
problem is called crew-pairing optimization.”

And more...

Delta Air Lines flies over 2,500 domestic flight legs every day,
using about 450 aircraft from 10 different fleets. The fleet
assignment problem is to match aircraft to flight legs so that
seats are filled with paying passengers. Recent advances in
mathematical programming algorithms and computer
hardware make it possible to solve optimization problems of
this scope for the first time. Delta is the first airline to
solve to completion one of the largest and most difficult
problems in this industry. Use of the Coldstart model is
expected to save Delta Air Lines $300 million over the next
three years.

Feasible S et

Each linear inequality divides n-dimensional
space into two halfspaces, one where the
inequality is satisfied, and one where it's not.

Feasible Set : solutions to a family of linear

inequalities.

Family of linear cost functions, gives family

of parallel hyperplanes (lines in 2D, planes in
3D, etc.). Want to find one of minimum cost
=> must occur at corner of feasible set.




An example: T he diet problem

Trying to decide on lowest cost diet that provides
sufficient amount of protein, with two choices:

« steak: 2 units of protein/pound, $3/pound

« peanut butter: 1 unit of protein/pound, $2/pound

In proper diet, need 4 units protein/day.
Goal: minimize 2x + 3y
subject to constraints:
x+2y>=4
X = # pounds peanut butter/day in optimal diet >=0
y = # pounds steak/day in optimal diet >=0

Visualy...
X= peanut butter, y = steak
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Genera Form of aLinear Program.

Minimize by, + b,y, +..+ by,

subject 10 X iy Y >= €5 j=Llun
y;>= 0 i=1.m

or

Maximize c;X; + C,X5 +..+ C,X,,

subject 10 X 1.j. p @X; <= by i=l.m
xp=0  j=l.n

The Feasible Set

Intersection of a set of half-spaces, called a
polyhedron.

If it's bounded and nonempty, it's a polytope

3 cases:
feasible set is empty
cost function is unbounded on feasible set.
cost has a minimum (or maximum) on feasible set.

First two cases very uncommon for genuine problems
in economics and engineering.




T he Simplex Method

Phase I : locate a corner of the feasible seft.

« corner = intersection of n different planes (in n dimensions)
Phase IT: move from corner to corner along the
edges of the feasible set -- always go along an edge
that is guaranteed to decrease the cost.

« Edge = intersection of n-1 different planes

When reach a local minimum (maximum), you've
found the optimum.

Simplex Algorithm: An Examplein 3D

Maximize 5x + 4y + 3z

subject to 2x+ 3y +z+<=5
4x+y+2z<=11
3x+4y+2z<8
xy,z >=0.

Step 0: convert inequalities into equalities by introducing slack
variables abc.

Define: a=5-2x-3y-z = a>0
b = 11-4x-y-2z = b >0
c= 8-3x-4y-2z  =>c¢ >0

F = Bx+4y + 3z, objective function

Example of Simplex Method, continued.

Step 1: Find initial feasible solution:

x=0,y=0,z=0 => a=5, b=11,¢c=8 =>F=0.

Step 2: Find feasible solution with higher value of F
For example, can increase x to get F=5x.

How much can we increase x?
a=5-2x-3y-z>0 => x<«=5/2 most stringent
b = 11-4x-y-2z>=0 => x<=11/4
c= 8-3x-4y-2z>=0 => x<=8/3

=> increase x to 5/2 =>F= 25/2, a=0, b=1, c=1/2

Example of Simplex Method, continued.

Want to keep doing this, need to get back into state
where x,b,c on |h.s. of equations.
a=5-2x-3y-z => x=5/2 -3/2y-1/2z-1/2 a (¥)
Substituting (*) into other equations:
b =11-4x-y-2z>=0 => b=1+by+2a
c= 8-3x-4y-2z>=0 => c=1/2+1/2y-1/22+3/2a
F = Bx+4y + 3z = F=25/2-7/2y+1/2z-5/2a

Inorder to increase F again, should increase

Example of Simplex Method, continued.

How much can we increase z?

x=5/2 -3/2y-1/2z-1/2 a =>z<«<5

b=1+5y+2a => no restriction
c=1/2+1/2y-1/2z+3/2a =>z<=1 most stringent (")

Setting z = 1yields
x=2,y=0,z=1,a0=0,b=1,¢c=0.
F=25/2-7/2 y+ 1/2z-5/2a = F=13.

Again, construct system of equations.
From (") z=1+y+3a-2c.

Example of Simplex Method, continued.

Substituting back into other equations:
z=1+y+3a-2c

x=5/2 -3/2y-1/22-1/2 a  =>x=2-2y-2a+c
b=1+by+2a =>b= 1+By+2a
F=25/2-7/2y+1/2z2-5/2a =>F=13-3y-a-c

And we're done.




T he Simplex Method

Phase I : locate a corner of the feasible seft.

« corner = intersection of n different planes (in n dimensions)
Phase IT: move from corner to corner along the
edges of the feasible set -- always go along an edge
that is guaranteed to decrease the cost.

« Edge = intersection of n-1 different planes
When reach a local minimum (maximum), you've
found the optimum.

What were we doing?

Each time we had a feasible solution we were at a
corner == a meeting point of 3 different planes.
We chose 3 variables and set them to 0, and made
sure remaining constraints were satisfied.

Then we moved along an edge == a meeting point of
2 different planes obtained from corner by
removing one equation. Moved along associated
edge until arrived at a new corner.

T he Simplex Algorithm and beyond....

In practice, quite fast -- typically only O(m) pivots
(where m is the number of constraints)

In worst case, exponen‘rial.

For a long time, it wasn't known if there was a
polynomial time algorithm until....

Khachian's algorithm "The Mathematical Sputnik of 1979"
« exterior-point method

And then there was Karmakar (1984)...

« interior-point method

« competes viably with simplex algorithm on real-world
problems.

A Central Result of LP T heory
Duality T heorem

Every linear program has a dual

If the original is a minimization, the dual is a
maximization and vice versa

Solution of one leads to solution of other
Primal: Minimize cx subject to Ax>= b, x=0
Dual: Maximize yb subject to yA <=c, y>=0

If one has optimal solution so does other, and
their values are the same.

Primal: Minimize cx subjectto Ax >=b, x>=0
Dual: Maximize yb subject to yA <=c, y>=0

In the primal, ¢ in cost function and b was in the
constraint. In the dual, reversed.

Inequality sign is changed and minimization turns to
maximization.

Example: minimize 2x + 3y subject to

x+2y>=4, 2x+ DBy >=1,x -3y »>= 2, x=0,y>=0
Dual problem: maximize 4p +q+2r subject to
p+2q+r<=2,2p+6q-3r<=3, pq,r>=0

An example: T he diet problem

Trying to decide on lowest cost diet that provides
sugficien‘r amount of protein, with two choices:

« steak: 2 units of protein/pound, $3/pound

« peanut butter: 1 unit of protein/pound, $2/pound

In proper diet, need 4 units protein/day.
Goal: minimize 2x + 3y
subject to constraints:
X +2y>= 4
X = # pounds peanut butter/day in optimal diet >=0
y = # pounds steak/day in optimal diet >=0




Simple Example

Diet problem: minimize 2x + 3y subject to
x+2y>:4’ x>=0, y>:O
Dual problem: maximize 4p  subject to
p<=2, 2p <=3, p>=0
Dual: the problem faced by a druggist who sells synthetic
protein, trying to compete with peanut butter and steak

He wants to maximize the price p, subject to constraints:

« synthetic protein must not cost more than protein

« price must be non-negative or he won't sell any

« revenue to druggist will be 4p

Solution: p<= 3/2 => objective function=4p=6

Not coincidence that it's = minimal cost in original problem.

More general diet problem

Minimum problem has n unknowns, n foods to be eaten in amounts x;,..., x,,
m constraints represent m required vitamins
entry a; is amount of i-th vitamin in j-th food.
i-th row of Ax >=b forces the diet to include that vitamin in at least the
amount by
€%y * .. + C,X, = cost of diet (¢; is cost of j-th food.)

Dual -- druggist selling vitamin pills rather than food.

Prices adjustable as long as nonnegative.

Key constraint -- on each food can't charge more than grocer.

Since food j contains vitamins in amount a;; , the druggist's price for the
equivalent in vitamins can't exceed ¢; => yA < c.

Can then sell amount b, of each vitamin for a total income of y,b;+..+

v.b

Example

Minimize c(st) x(st) + c(pb) x(pb) subject to
prot(st) x(st) + prot(pb) x(pb) >= q(prot)
carbo(st) x(st) + carbo(pb) x(pb) >= q(carbo)
x(st), x(pb) >= 0
c(n) = per unit cost of food n, x(n) quantity of food n to purchase per
day, prot(n) = units protein per unit of food n, carbo (n) = units carbo
per unit n q(prot) = protein units per day needed, g(carbo) = carbo units
per day
Dual -- druggist selling synthetic protein and carbohydrate pills
maximize q(prot) y(s-prot) + q(carbo) y(s-carbo) subject to
y(s-prot) prot(st) + y(s-carbo) carbo(st) <= c(st)
y(s-prot) prot(pb) + y(s-carbo) carbo(pb) <= c(pb)
y(s-prot), y(s-carbo) >= 0
Can ‘r‘hen sell amount q(prot) of protein per day and q(carbo) of carbo

What’s going on?

Notice: feasible sets completely different for primal and
dual, but nonetheless an important relation between them.
Duality theorem says that in the competition between the
grocer and the druggist the result is always a tie.
Optimal solution to primal tells purchaser what to do.
Optimal solution to dual fixes the natural prices at which
economy should run.
The diet x and vitamin prices y are optimal when
« grocer sells zero of any food that is priced above its vitamin equivalent.
« druggist charges 0 for any vitamin that is oversupplied in the diet.

Dudlity Theorem

Druggist's max revenue = Purchasers min cost

One direction of dudlity easy , for any feasible x, y:
q(prot) y(s-prot) + q(carbo) y(s-carbo) <= x(st) c(st) + x(pb) c(pb)

Since each food can be replaced by its vitamin equivalent, with no increase
in cost, all adequate diets must be at least as expensive as any price the
druggist would charge.

For [x(st), x(pb)] and
[y(s-prot), y(s-carbo)] feasible =>

[prot(st) x(st) + prot(pb) x(pb)] y(s-prot) >= q(prot) y(s-prot)
[carbo(st) x(st) + carbo(pb) x(pb)] y(s-carb) >= q(carbo) y(s-carb)

Sum two inequalities =>

q(prot) y(s-prot) + q(carbo) y(s-carbo) <=
[prot(st) x(st) + prot(pb) x(pb)] y(s-prot) +
[carbo(st) x(st) + carbo(pb) x(pb)] y(s-carbo)
= x(st) [y(s-prot) prot(st) + y(s-carbo) carbo(st) ]+
x(pb) [y(s-prot) prot(pb) + y(s-carbo) carbo(pb)]
<= x(st) c(st) + x(pb) c(pb)

When they are equal, they both must be optimal.




Practical Use of Duality

Sometimes simplex algorithm (or other
algorithms) will run faster on the dual than
on the primal.

Can be used to bound how far you are from
optimal solution.

Important implications for economists.

Formulate as LP

Want to invest $1000 in 3 stocks, <= $400 per

price/share dividends/year
stock A $50 $2
stock B $200 $5
stock C $20 0

stock C has prob 1/2 of appreciating to $25 ina
year, or (prob 1/2) staying same.

What amount of each stock should be bought to
maximize dividends + expected appreciation over
ayear?

Application:
Optima Pipeline
A piece of data of size D goes through a
pipeline of n stages.
Each stage has associated

* 0, -- overhead of i-th stage
* b, -- bandwidth of i-th stage (bits/sec)

How should data be broken up into k pieces,
not necessarily of equal size, so as to
minimize time through the pipeline?

Summary of Linear Programming

Of great practical importance to solve linear
programs:
 they model important practical problems

« production, approximating the solution of inconsistent equations,
manufacturing, network design, flow control, resource allocation.

* solving an LP is often an important component of solving or
approximating the solution to an integer linear
programming problem.

The simplex algorithm works very well in practice.

One problem where you really do not want to roll
your own code.




