CSE 589 Part V

One of the symptoms of an approaching nervous breakdown is the belief that one's work is terribly important.

Bertrand Russell

Reading

Skiena, chapter 6

CLR, chapter 36

Easy vs. Hard Problems

The standard definition of a tractable problem is one that can be solved in time that is polynomial in the size of the input. Why?

- Very few practical problems require time which is high-degree polynomial
- equivalent on different models of computation
- · nice closure properties

This class of problems called P.

NP -- class of problems whose solution can be verified in polynomial time. Framed as "decision problems".

Hardest problems in NP are NP-complete

Provably NP-complete problems --

If any one can be solved in polynomial time, then all of them can.

Right now, no known efficient algorithm known. Biggest open problem in CS:

P = NP?

Heuristics/approximation algorithms typically used. Sometimes solved exactly too -- depends on the application area.

Most notorious hard graph problem

Traveling Salesman Problem

- Input description: A weighted graph G, B >= 0
- Output description: Is there a cycle going through each of the vertices once of total cost at most B?

Example: optimization of tool path for manufacturing equipment. E.g., robot arm assigned to solder all connections on printed circuit board.

Essence of NP-completeness

We haven't a clue, so when we're given a problem we can't solve efficiently, we try to find whether it is equivalent to other problems we can't solve efficiently.

Hundreds (thousands?) of equivalently hard NP-complete problems of immense practical importance. (scheduling, resource allocation, hardware design and test,......)

Polynomial Time Reductions

Let R and Q be two problems. We say that R is polynomially reducible to Q if there is a polynomial time algorithm that converts each input r to R to another input q to Q such that r is a yes-instance of R if and only if q is a yes-instance of Q.

Theorem: If R is polynomially reducible to Q and there is a polynomial time algorithm for Q, then there is a polynomial time algorithm for R.

Other Factoid: Polynomial reducibility is transitive.

Definitions, etc.

NP: class of problems whose solutions can be verified in polynomial time.

A problem Q is **NP-hard** if every problem in NP is polynomially reducible to Q.

A problem Q is NP-complete if

- Q belongs to NP
- Q is NP-hard

Proving a Problem is NP-complete

Cook proved that there exist NP-complete problems (satisfiability).

Once we have one, can start blazing.

To prove a problem Q is NP-complete

- . show Q is in NP
- show R is polynomially reducible to Q, for some NPcomplete problem R.

Remarkable Theorem of Steve Cook (1971) Proved that there exist NP-complete problems

The Satisfiability problem is NP-complete.
Satisfiability: Given a boolean formula in conjunctive normal form (and of ors), is there an assignment of the variables to 0's and 1's so that the resulting formula evaluates to 1?

Example:

Idea of Proof

In NP: easy.

If a problem is in NP, there is a nondeterministic Turing machine that recognizes yes-instances.

A Turing machine and all its operations on a given input can be described by a Boolean expression such that:

Expression is satisfiable if and only if the Turing machine will terminate at an accepting state for given input.

=> any NP algorithm can be described by an instance of SAT

Some NP-complete Problems

Satisfiability

Input description: Given a boolean formula in conjunctive normal form

Problem description: Is there a truth assignment for the variables that causes the formula to evaluate to 1.

Special case where every clause is disjunction of exactly 3 literals also NP complete (called 3-SAT)

Example: digital design, hardware testing,....

Traveling Salesman Problem

Input description: A weighted graph G, L Output description: Is there a tour of length at most L that visits each of the vertices exactly once.

Optimization version: minimize the length of the tour.

Clique

Input description: A graph G=(V,E), k Problem description: Is there a subset S of V of size at least k such that for all x,y in S, (x,y) in E.

Optimization Version: Find maximum sized subset S.

Vertex Coloring

Input description: A graph G=(V,E), k Problem description: Is it possible to color the vertices of the graph using at most k colors such that for each edge (i,j) in E, vertices i and j have different colors

Optimization version: minimize the number of colors used.

Example: Register allocation for compilers.

Independent S et

Input description: A graph G=(V,E), k Problem description: Is there a subset S of V of size at least k such that no pair of vertices in S has an edge between them.

Example:

- Identifying location for a new franchise service such that no two locations are close enough to compete with each other.
- Highest capacity code for given communication channel.

Hamiltonian Cyde

Input description: A graph G=(V,E)Problem description: Is there an ordering of the vertices such that adjacent vertices in the ordering are connected by an edge and each vertex is visited exactly once.

Example:

Triangle strip problem.

Graph Partition

Input description: A weighted graph G=(V,E) and integers j,k

Problem description: Is there a partition of the vertices into two subsets such that each subset has size at most j, and the weight of edges connecting the two subsets is at most k.

Example:

VLSI layout

Steiner Tree

Input description: A graph G=(V,E), a subset T of the vertices V, and a bound B

Problem description: Is there a tree connecting all the vertices of T of total weight at most B?

Example:

Network design and wiring layout.

Integer Linear Programming

Input description: A linear functional cx, a set of linear constraints Ax >= b, a set of non-negative variables x that can take on only integer values, say 0 or 1, a value V.

Problem description: Are there 0/1 integer values for the variables x satisfying the linear constraints such that the linear functional cx <= V.

Optimization version: minimize V. Example: absolutely everything

How you prove a problem Q is NP-complete.

- 1. Prove it's in NP
- 2. Select a known NP-complete problem R.
- 3. Describe a polynomial time computable algorithm that computes a function f mapping every instance of R to some instance of Q.
- 4. Prove that for every yes-instance of R maps to a yes-instance of Q, and every no-instance of R maps to a no-instance of Q.

Remember

showing a problem A is NP-complete is showing that you can **use** A to solve a known NP-complete problem

Let's do some NP-completeness proofs

Suppose somebody else has already shown that the following problems are NP-complete

- 3SAT
- Hamiltonian Cycle
- Vertex Cover

Let's show the following problems are NPcomplete

Clique Independent Set Travelling Salesman Problem

Comments on NP-completeness proofs

- hardest part -- choosing a good problem from which to do reduction
- must do reduction from arbitrary instance
- common error -- backwards reduction. Remember that you are using your problem as a black box for solving known NPC problem
- freedom in reduction: if problem includes parameter, can set it in a convenient way
- size of problem can change as long as it doesn't increase by more than polynomial

Comments cont.

• if problem is generalization of known NP-complete problem, reduction is usually easy.

Example: Set Cover

- given U, set of elements, and collection S1, S2,.., Sn of subsets of U, and an integer k
- determine if there is a subset W of U of size at most k that intersects ever set Si

Reduction from Vertex Cover

- U set of vertices
- Si is ith edge