CSE 589 PartV

One of the symptoms of an approaching nervous breakdown is
the belief that one's work is terribly important.

Bertrand Russell

Reading

Skiena, chapter 6

CLR, chapter 36

Easy vs. Hard Problems

The standard definition of a tractable problem is one that
can be solved in time that is polynomial in the size of the
input. Why?

« Very few practical problems require time which is high-degree polynomial
« equivalent on different models of computation

 nice closure properties

This class of problems called P.

NP -- class of problems whose solution can be verified in
polynomial time. Framed as "decision problems".

Many many many many many many many many many many
important problems are in NP (in fact, NP-complete.)

Hardest problems in NP are NP-complete

Provably NP-complete problems --
If any one can be solved in polynomial time,
then all of them can.
Right now, no known efficient algorithm
known. Biggest open problem in CS:

P = NP?
Heuristics/approximation algorithms typically
used. Sometimes solved exactly too --
depends on the application area.

Most notorious hard graph problem

Traveling Salesman Problem
« Input description: A weighted graph G, B>=0

» Output description: Is there a cycle going through
each of the vertices once of total cost at most B?

Example: optimization of tool path for
manufacturing equipment. E.g., robot arm assigned
to solder all connections on printed circuit board.

Essence of NP-completeness

We haven't a clue, so when we're given a
problem we can't solve efficiently, we try to
find whether it is equivalent to other
problems we can't solve efficiently.

Hundreds (thousands?) of equivalently hard
NP-complete problems of immense practical
importance. (scheduling, resource allocation,
hardware design and test,........)




Polynomial Time R eductions

Let R and Q be two problems. We say that R is
polynomially reducible to Q if there is a
polynomial time algorithm that converts each
input r to R to another input q to Q such that r i
a yes-instance of R if and only if q is a yes-
instance of Q.

Theorem: If R is polynomially reducible to Q and
there is a polynomial time algorithm for Q, then
there is a polynomial time algorithm for R.

Other Factoid: Polynomial reducibility is transitive.
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Definitions, etc.

NP : class of problems whose solutions can be
verified in polynomial time.

A problem Q is NP-hard if every problem in
NP is polynomially reducible to Q.

A problem Q is NP-complete if

* Q belongs to NP

¢ Qis NP-hard

Proving a Problemis NP-complete

Cook proved that there exist NP-complete
problems (satisfiability).

Once we have one, can start blazing.

To prove a problem Q is NP-complete
¢ show Q is in NP
« show R is polynomially reducible to Q, for some NP-
complete problem R.

R emarkable T heorem of S teve Cook (1971)
Proved that there exist NP-complete problens

The Satisfiability problem is NP-complete.

Satisfiability: Given a boolean formula in conjunctive
normal form (and of ors), is there an assignment of the
variables to O's and 1's so that the resulting formula
evaluates to 1?

Example:

|dea of Proof

InNP: easy.

If a problem is in NP, there is a nondeterministic
Turing machine that recognizes yes-instances.

A Turing machine and all its operations on a given
input can be described by a Boolean expression
such that:

Expression is satisfiable if and only if the Turing
machine will terminate at an accepting state for
given input.

=> any NP algorithm can be described by an
instance of SAT

S ome NP-complete Problems




s atisfiability

Input description: Given a boolean formula in
conjunctive normal form
Problem description: Is there a truth

assignment for the variables that causes the
formula to evaluate to 1.

Special case where every clause is disjunction of
exactly 3 literals also NP complete (called 3-SAT)

Example: digital design, hardware testing,....

Traveling S alesman Problem

Input description: A weighted graph G, L
Output description: Is there a tour of length
at most L that visits each of the vertices
exactly once.

Optimization version: minimize the length of
the tour.

Clique

Input description: A graph 6=(VE), k
Problem description: Is there a subset S of V
of size at least k such that for all x,y in S,
(x,y)inE.

Optimization Version: Find maximum sized
subset S.

Vertex Coloring

Input description: A graph 6=(V,E), k

Problem description: Is it possible to color the
vertices of the graph using at most k colors such
that for each edge (i,j) in E, vertices i and j have
different colors

Optimization version: minimize the number of
colors used.

Example: Register allocation for compilers.

Independent S et

Input description: A graph G=(V,E), k
Problem description: Is there a subset S of V
of size at least k such that no pair of
vertices in S has an edge between them.

Example:

« Identifying location for a new franchise service such that no
two locations are close enough to compete with each other.

« Highest capacity code for given communication channel.

Hamiltonian Cyde

Input description: A graph 6=(VE)

Problem description: Is there an ordering of
the vertices such that adjacent vertices in
the ordering are connected by an edge and
each vertex is visited exactly once.

Example:
Triangle strip problem.




Graph Partition

Input description: A weighted graph 6=(V,E) and
integers j k

Problem description: Is there a partition of
the vertices into two subsets such that each
subset has size at most j, and the weight of edges
connecting the two subsets is at most k.

Example:
VLST layout

Steiner Tree

Input description: A graph 6=(V,E), a subset T
of the vertices V, and a bound B

Problem description: Is there a tree connecting
all the vertices of T of total weight at most B?

Example:
Network design and wiring layout.

Integer Linear Programming

Input description: A linear functional ex, a set of
linear constraints Ax >= b, a set of non-negative
variables x that can take on only integer values, say
Oor1l, avalue V.

Problem description: Are there 0/1 integer
values for the variables x satisfying the linear
constraints such that the linear functional ex <= V.

Optimization version: minimize V.
Example: absolutely everything

How you prove a problem Q is NP-complete.

1. Prove it's in NP

2. Select a known NP-complete problem R.

3. Describe a polynomial time computable
algorithm that computes a function f mapping
every instance of R to some instance of Q.

4. Prove that for every yes-instance of R maps
to a yes-instance of Q, and every no-instance
of R maps to a no-instance of Q.

R emember

showing a problem A is NP-complete is
showing that you can use A to solve a known
NP-complete problem

Let’s do some NP-completeness proofs

Suppose somebody else has already shown
that the following problems are NP-complete
* 3SAT

» Hamiltonian Cycle

* Vertex Cover




Let’s show the following problems are NP-
complete

Clique
Independent Set
Travelling Salesman Problem

Prosf that Clique is NP-amplete
1. Clique € NP
Q. Reduction from JSAT
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Comments on NP-completeness proofs

hardest part -- choosing a good problem from which
to do reduction

must do reduction from arbitrary instance

common error -- backwards reduction. Remember
that you are using your problem as a black box for
solving known NPC problem

« freedom in reduction: if problem includes parameter,

can set it in a convenient way

« size of problem can change as long as it doesn’t

increase by more than polynomial

Comments cont.

« if problem is generalization of known NP-complete
problem, reduction is usually easy.

Example: Set Cover

« given U, set of elements, and collection S1, S2,.., Sn
of subsets of U, and an integer k

 determine if there is a subset W of U of size at most k
that intersects ever set Si

Reduction from Vertex Cover

* U set of vertices

« Si isith edge




