CSE 589 Part VI

Reading

Skiena, Sections 5.5 and 6.8

CLR, chapter 37

Techniques for Dealing with NP-complete Problems

Exactly

• backtracking, branch and bound

Approximately

- approximation algorithms with performance guarantees
- using LP (e.g., randomized rounding)
- · local search, tabu search
- · simulated annealing
-

Change the problem.

Obtaining an Exact Solution: backtracking and branch-and-bound

Backtracking Example: Finding a 3-coloring of a graph

Explore possibilities; backtrack when doesn't work.

Start by assigning an arbitrary color to one of the vertices.

Continue coloring while maintaining the constraints imposed by the edges

If reach a vertex that can't be colored, backtrack -- go back up the recursion tree and explore other children

Branch-and-Bound

Variation for case where finding minimum (or maximum) of objective function

Example: finding the minimum number of colors needed to color graph.

Idea: improve performance of algorithm by pruning search when know that can't possibly be going down the correct path.

Example: Minimum number of colors in graph coloring

Suppose traverse tree to leaf and find valid coloring with k colors

Suppose later, after backtracking, reach a vertex that requires a (k+1)st color => can backtrack.

In example, k serves as a bound for backtracking.

Branch-and-Bound Pruning technique Lower bound computation

How might you obtain such a bound?

Example: looking for a maximum clique. Formulate problem as integer linear programming problem.

N variables $x_1, \dots x_n$ corresponding to vertices • $x_i = 1$ if node v_i is in maximum clique, 0 otherwise Constraints: $x_i + x_j <= 1$ for each pair of vertices such that (v_i, v_j) NOT an edge; x_i in $\{0,1\}$ for every i

Objective Function: maximize

Bounds for dique problem

Use solution to corresponding linear program:

• $0 \le x_i \le 1$

What can you say about the solution v^* of linear program?

Two things you can do with linear program

Use it to get upper bounds on solution:

- Example: at a node in tree with corresponds to including v,w in clique but excluding x, y.
- If at that point solution of LP gives bound < size of already known clique, can backtrack.

Can use it to help choose good traversal order => good solutions found fast => can backtrack earlier.

• Example: if x_i =1 in linear program, might guess that v_i is in integer solution as well.

Approximation Algorithms With Provable
Performance Guarantees

Approximation Algorithms

The fact that a problem is NP-complete doesn't mean that we can't find an approximate solution efficiently.

Would really like guarantee on performance.

Example 1: Vertex Cover

Given G=(V,E), find a minimum sized subset W of the vertices V such that for every (v,w) in E, at least one of v or w is in W.

Approximation Algorithm:

- while edges remain
 - select an arbitrary edge (u,v)
 - add both u and v to the cover
 - delete all edges incident on either u or v

The Vertex Cover Produced Is At Most Twice The Size Of The Optimal VC

Proof:

consider the edges selected.

No two of these edges share a vertex therefore, just considering these edges, any cover must include at least one vertex per edge.

Example 2: Approximation Algorithm for Euclidean Traveling Salesman Problem

The Problem: Given n points in the plane (corresponding to the locations of n cities) find a shortest traveling salesman tour

Distances in the plane satisfy the triangle inequality:

 $dist(a,b) \leftarrow dist(a,c) + dist(c,b)$

Approximation Algorithm For Eudidean TSP

Find a minimum spanning tree of points

Convert to tour by following DFS and including edge in opposite direction when tour backtracks.

Construct shortcuts by taking direct routes instead of backtracking.

Better version of algorithm

Uses basic graph algorithms as subroutines: Matching (Skiena, Section 8.4.6)

- a matching in a graph G=(V,E): a set of edges S from E such that each vertex in V is incident to at most one edge of S.
- a maximum matching in G: a matching of maximum cardinality
- a minimum weight matching in a weighted graph: a maximum matching of minimum total weight.

Better version of algorithm

Euler tours (Skiena, Section 8.4.6)

- An Euler tour in a graph is a tour of the graph that visits each edge exactly once.
- Well known that an undirected graph contains an Euler tour (or cycle) iff (1) it is connected and (2) each vertex has even degree.
- Easy to construct Euler tours efficiently.

Better version of algorithm

Find minimum length matching of odd-degree vertices.

• There's an even number of them.

Find Eulerian tour of MST plus edges in matching.

This algorithm has provably performance guarantee

Theorem: The approximation algorithm for Euclidean TSP finds a tour of length at most 3/2 optimal.

Proof:

weight of MST <= weight of optimal tour weight of matching <= (weight of optimal tour)/2

shortcuts don't cost

Randomized Approximation Algorithms:
Using Linear Programming

Randomized Rounding

Randomized algorithm: makes random choices during its execution.

Randomized rounding: technique for using linear programming and randomization to produce approximate solution for integer programming problem.

Example: Global Wiring In A Gate Array

2D array of gates implement logic circuit by connecting some of gates using wires.

Net: set of gates to be connected by wires running parallel to axes. Wiring problem: given set of nets, specify physical path for each to minimize max # wires crossing any boundary.

Simplifications

Each net = 2 gates

Global route for each net contains at most one 90° turn.

- · First horizontal, then vertical
- first vertical, then horizontal

Problem remains NP-complete with these simplifications.

Cast as Integer Program

 $h_{\rm i}$ = 1 if route for i-th net goes horizontally first, then vertically. O otherwise.

 $v_{\rm i}$ = 1 if route for i-th net goes vertically first, then horizontally.

For each boundary b in array:

 $B_0 = \{i \mid net \mid passes through b \mid fh_i = 1\}$

 $B_1 = \{i \mid net \mid passes through b \mid f v_i = 1\}$

Constraints:

Randomized Rounding

Solve linear programming relaxation:

• gives you optimum: h_i^* , v_i^* for each i and w^* What can you say about w^* ?

Set h = 1 with probability h *

Set $v_i = 1$ with probability v_i^*

Value of resulting w provably close to w*

Your turn to analyze an approximation algorithm for an NP-complete problem.

Bin Packing: Let \mathbf{x}_1 \mathbf{x}_2 ,..., \mathbf{x}_n be real numbers between 0 and 1. Partition them into as few subsets (bins) as possible such that the sum of numbers in each subset is at most 1.

Heuristic Solution: First Fit

- put x₁ in first bin
- then, for each i, put x_i in the first bin that has room for it, or start a new bin if there is no room in any of the used bins.

Prove that First Fit requires at most twice the optimal number of bins.