CSE 589 Part VI

Reading

Skiena, Sections 5.5 and 6.8

CLR, chapter 37

T echniques for Dealing with
NP -complete Problems

Exactly
* backtracking, branch and bound
Approximately
 approximation algorithms with performance guarantees
* using LP (e.g., randomized rounding)
* local search, tabu search
* simulated annealing

Change the problem.

Obtaining an Exact Solution:

backtracking and branch-and-bound

Backtracking
Example: Finding a 3-coloring of a graph

Explore possibilities; backtrack when doesn't
work.

Start by assigning an arbitrary color to one
of the vertices.

Continue coloring while maintaining the
constraints imposed by the edges

If reach a vertex that can't be colored,
backtrack -- go back up the recursion tree
and explore other children

Graph Recursion Tree

37 YB
RTANEAN

5R

Ve

Branch-and-Bound

Variation for case where finding minimum (or
maximum) of objective function

Example: finding the minimum number of
colors needed to color graph.

Tdea: improve performance of algorithm by
pruning search when know that can't possibly
be going down the correct path.

Example: Minimum number of colors in
graph coloring

Suppose traverse tree to leaf and find valid
coloring with k colors

Suppose later, after backtracking, reach a
vertex that requires a (k+1)st color => can
backtrack.

In example, k serves as a bound for
backtracking.

Branch-and-Bound

Pruning technique

L ower bound computation

How might you obtain such a bound?

Example: looking for a maximum clique.
Formulate problem as integer linear
programming problem.

N variables x;,.... x, corresponding to vertices
* X; = 1 if node v; is in maximum clique, 0 otherwise

Constraints: x; +x; <= 1 for each pair of
vertices such that(v; , v;) NOT an edge: x;
in {0,1} for every i

Objective Function: maximize

Bounds for dique problem

Use solution to corresponding linear program:
* O<=x<=1

What can you say about the solution v* of linear
program?

Two things you can do with linear program

Use it to get upper bounds on solution:

» Example: at a node in tree with corresponds to
including v,w in clique but excluding X, y.

« If at that point solution of LP gives bound < size of
already known clique, can backtrack.

Canuse it to help choose good traversal

order => good solutions found fast => can

backtrack earlier.

» Example: if x;=1 in linear program, might guess that v;
is in integer solution as well.

Approximation Algorithms With Provable

Performance Guarantees

Approximation Algorithms

The fact that a problem is NP-complete
doesn't mean that we can't find an
approximate solution efficiently.

Would really like guarantee on performance.

Example 1: Vertex Cover

Given G=(V,E), find a minimum sized subset W
of the vertices V such that for every (v,w) in
E, at least one of vor wisin W.
Approximation Algorithm:
« while edges remain

* select an arbitrary edge (u,v)

» add both u and v to the cover
« delete all edges incident on either u or v

T he Vertex Cover Produced Is At Most
Twice The Size Of The Optimal VC

Proof:
consider the edges selected.
No two of these edges share a vertex

therefore, just considering these edges, any
cover must include at least one vertex per
edge.

Example 2: Approximation Algorithm for
Eudidean Traveling S alesman Problem

The Problem: Given n points in the plane
(corresponding to the locations of n cities)
find a shortest traveling salesman tour

Distances in the plane satisfy the triangle
inequality:
dist(a,b) <= dist(a,c) + dist(c,b)

Approximation Algorithm F or
Eudidean TSP

Find a minimum spanning tree of points
Convert to tour by following DFS and

including edge in opposite direction when
tour backtracks.

Construct shortcuts by taking direct routes
instead of backtracking.

Better version of algorithm

Uses basic graph algorithms as subroutines:

Matching (Skiena, Section 8.4.6)

* a matching in a graph G=(V,E): a set of edges S from
E such that each vertex in V is incident to at most
one edge of S.

¢ a maximum matching in G: a matching of maximum
cardinality

« a minimum weight matching in a weighted graph: a
maximum matching of minimum total weight.

Better version of algorithm

Euler tours (Skiena, Section 8.4.6)

* An Euler tour in a graph is a tour of the graph that
visits each edge exactly once.

» Well known that an undirected graph contains an
Euler tour (or cycle) iff (1) it is connected and (2)
each vertex has even degree.

» Easy to construct Euler tours efficiently.

Better version of algorithm

Find minimum length matching of odd-degree
vertices.

» There’s an even number of them.

Find Eulerian tour of MST plus edges in
matching.

T his agorithm has provably performance
guarantee

Theorem: The approximation algorithm for
Euclidean TSP finds a tour of length at most
3/2 optimal.

Proof:
weight of MST <= weight of optimal tour
weight of matching <= (weight of optimal
tour)/2
shortcuts don't cost

Optimal

. / TSP tour

“““ Green vertices:

odd-degree verticesin D

Randomized Approximation Algorithms:

Using Linear Programming

Randomized R ounding

Randomized algorithm: makes random choices
during its execution.

Randomized rounding: technique for using
linear programming and randomization to
produce approximate solution for integer
programming problem.

Example: Global Wiring In A Gate Array

2D array of gates
implement logic circuit by

connecting some of gates using
wires.

Net: set of gates to be connected
by wires running parallel to axes.

‘o ©

Wiring problem: given set of nets,

specify physical path for each to
minimize max # wires crossing any
boundary.

Simplifications

Each net = 2 gates

Global route for each net contains at most
one 90° turn.

« First horizontal, then vertical

« first vertical, then horizontal

Problem remains NP-complete with these
simplifications.

Cast as Integer Program

h; = 1 if route for i-th net goes horizontally first,
then vertically. O otherwise.

v; = L if route for i-th net goes vertically first,
then horizontally.

For each boundary b in array:
By ={i | net i passes through b if h; = 1}
B, ={i | net i passes through b if v, = 1}
Constraints:

Randomized R ounding

Solve linear programming relaxation:
* gives you optimum: h* ,v* for eachiand w*
What can you say about w*?

Set h; = 1 with probability h;*
Set v, = 1 with probability v;*
Value of resulting w provably close to w*

Y our turn to analyze an approximation
algorithm for an NP-complete problem.

Bin Packing: Let X X, ,..., X, be real numbers between O
and 1. Partition them into as few subsets (bins) as
possible such that the sum of numbers in each subset is
at most 1.

Heuristic Solution: First Fit

* put x, in first bin

« then, for each i, put x;in the first bin that has room for it, or
start a new bin if there is no room in any of the used bins.

Prove that First Fit requires at most twice the

optimal humber of bins.

