CSE 589 Part VI

If you try to optimize everything, you will always be unhappy.
-- Don Knuth

Local Search

Local S earch Algorithms

General Idea:

Start with a solution (not necessarily good
one)

Repeatedly try to perform modifications to
the current solution o improve it

Use simple local changes.

Loca Search Procedure for TSP

Example: Start with TSP tour, repeatedly perform
Swap, if it improves solution (Swap sometimes
called 2-opt)

Call this 6reedy Local Search

Does Greedy Local S earch Lead E ventually
To Optimal T our?

No.

S olution S paces

Solution Space: set of all solutions to a search
process and ways one can move from one solution to
another.

Represent process using a graph: a vertex for each
possible solution, an edge from solution to solution
if a local move can take you from one to other.

Key question: how to choose moves. Art.

Tradeoff between small neighborhoods and large
neighborhoods.

Other Types of Local Moves For TSP Used

3-Opt

Problem with loca search

can get stuck in a local optimum.

To avoid this, perhaps should sometimes allow
an operation that takes you to a worst
solution.

Hope is to escape the local optima and find
global optimum.

Simulated Annealing

Simulated Annealing
Analogy with thermodynamics:

Best crystals grown by “annealing” out their
defects.

* First heat or melt material

* Then very very slowly cool to allow system to
find its state of lowest energy.

Notation

Solution Space X, x is a solution in X

Energy (x) -- measure of how good a solution x is.
Each x in X has a neighborhood.

T ~ temperature

Example: TSP problem; X is all possible tours
(permutations). Energy(x): quality of tour (as measured
by its length)

Moves for TSP (example)

Section of path removed; replaced with same
cities in reverse direction

Section of path removed, placed between 2
cities on another, randomly chosen part of
path

Metropolis Algorithm

initialize T to hot, choose starting state
do
generate a random move
evaluate dE (change in energy)
if (dE<0) then accept the move
else accept the move with probability
proportional fo e - € /KT
update T
until Tis “frozen".

What’s going on?

T big: more likely to accept big moves.
Theory:

For fixed T, probability of being in state x
converges to e - Ex/T

For small T, probability of being in lowest
energy state is highest

However, very little known theoretically
Widely used.

Cooling S chedule

Cooling schedule: function for updating T.

Typically,

power law: a(l+bt) ¢

exponential decay: ae ®*

a -- initial tolerance parameter

b -- scaling parameter, typically <« 1

parameter choices chosen by
experimentation.

T ermination Criteria

Limit the total number of steps.

Step when there has been no improvement in
cost of best tour in last m iterations.

An agorithms engineering view of
Hashing S chemes and R elated
T opics

Slides by Andrei Broder
Alta Vista

Engineering

Engineering is the professional art of applying
science to the optimum conversion of the

resources of nature to the uses of humankind.

[Britannical

E ngineering

An engineer is a man who can do for a
dime what any damn fool can do for a
dollar.
[Nevil Shute]

Algorithms Engineering

The art and science of crafting

cost-efficient algorithms.

Plan

Introduction
Standard hashing schemes

Choosing the hash function
« Universal hashing

Fingerprinting
Bloom filters
Perfect hashing

Reading
Skiena, Sections 2.1.2,8.1.1

CLR, chapter 12

Some other good books...

Textbook: R. Sedgewick, Algorithms in C,
3rd ed, 1997.

More C: D. Hanson, C Interfaces and
Implementations, 1997,

Math bottom line + references & timings: R.
Baeza-Yates & 6. Gonnet, Handbook o
algorithms and Data Structures, 2nd ed,
1991.

THE BOOK on analysis of algorithms: Knuth,
Art of Computer Programming. Vol 1, 3rd ed,
1997, Vol 3, 1973.

Dictionaries (Symboal tables)

Dictionaries are data structures for
manipulating sets of data items of the form
item = [key, info]

For simplicity assume that the keys are
unique. (Often not true, must deal with it.)

Some examples of dictionaries

Rolodex

« Hash function: first letter

« Supports insertions, deletions

Spelling dictionary

« System word list is fixed.

» Personal word list allows additions.

« Issues: Average case must be very fast, errors allowed,

nearest neighbor searches.

Router

« Translate destination into wire number.
« Insertions and deletions are rare.

« Strict limit on the worst case.

Basic operations

item = [key, infol; Given the item the
key can be extracted or computed.

Insert (item) ;
Delete (item) ;

Search (key) ; (returns item)

More operations

Init (..);
Exists (key) ; (returns Boolean)

List(..); Sort(..); Iterate(..); (return
the entire list unordered/ordered/one-at-a-time);

Join(..) ; (combine two structures);
Nearest (key) ; (returns item)

For our examples

Rolodex

e Insert; Delete; Search;

? Exists; List; Iterate; Join;
Nearest;

Spelling dictionary (system)

e Exists; Nearest;

Router
e Insert; Delete; Search;

Implementing dictionaries

Schemes based on key comparison - keys
viewed as elements of arbitrary total order

 Ordered list
 Binary search trees

Schemes based on direct key = address-in-
table translation.

* Hashing

* Bloom filters

Hashing schemes - basics

We want to store N items in a table of size M,
at a location computed from the key K.
Two main aspects:

Hash function

» Method for computing table index from key

Collision resolution strategy
» How to handle two keys that hash to the same index

Hash functions

Simple choice:

* Table size M

* Hashfunction h(K) = K mod M;

Works fine if keys are random integers.
Example: 20 random keys in [1..100]

Why do cdllisions happen?

Birthday paradox: expected number of
random insertions until the first collision is
only

sqgrt (m*M/2)

[56, 82, 87, 39, 98, 86, 69, 22, 99, 61, Examples:
64, 50, 77, 75, 8, 62, 17, 10, 71, 58] M = 100 sqrt (m*M/2) ~ 12
..hashed in a table of size 20 M = 1000 sqrt (m*M/2) ~ 40
[1167', U5 s, 3, 17, To, a1y ey M = 10000 sqrt(n*M/2) ~ 125
S eparate chaining Example
Input:

Basic method: keep a linked list for each
table slot.

Advantages:

« Simple, widely used (maintainability)
Disadvantages:

* Wastes space, must deal with memory allocation.

[56, 82, 87, 39, 98, 86, 69, 22, 99, 61,
64, 50, 77, 75, 8, 62, 17, 10, 71, 58]

Hash table:

0: [50, 10] 5: [75]

1: [61, 711 6: [56, 86]

2: [82, 22, 62] 7: (87, 77, 171
3:] 8: [98, 8, 58]
4: [64] 9: [39, 69, 99]

P erformance

Insert cost: 1

Average search cost (hit): 1+(N-1)/(2 m)

Average search cost (miss): 1+N/M

Worst case search cost: N+1

Expected worst case search cost (n=m):
~log n/log log n

Space requirements:

o (N + M) * |link| + N*|key| + N*|info]

Deletions: easy

Adaptation (new hash function): easy

E mbellis hments
Keep lists sorted:
» Average insert cost: 1+N/ (2 M)
 Average search cost (hit): 2+ (N-1) / (2 M)
» Average search cost (miss): 1+N/ (2 M)
Move-to-front / transpose

 Last item accessed in a list becomes the first or
moves one closer (Self adjusting hashing)

Store lists as a binary search tree:
« Improves expected worst case

Open addressing

No links, all keys are in the table.

When searching for x, check locations r, (k) ,
r,(K), r,(K), ..until either

¢ K is found; or

« we find an empty location (K not present)

Various flavors of open addressing differ in
which probe sequence they use.

Random probing -- each r, is random.
(Impractical)

Linear probing

When searching for x, check locations n(x),
h(K)+1, h(K)+2, ..until either

¢ K is found; or

« we find an empty location (K not present)

If table is very sparse, almost like separate
chaining.

When table starts filling, we get clustering

but still constant average search time.

Full table = infinite loop.

Primary dustering phenomenon

Once a block of a few contiguous occupied
positions emerges in table, it becomes a
“target" for subsequent collisions

As clusters grow, they also merge to form
larger clusters.

Primary clustering: elements that hash to
different cells probe same alternative cells

Linear probing -- dustering

CTRUILE
\y\ﬂmmuumy_guuum
e oot
Luf \—\\ﬂLJU\ﬂ\ﬁuJ\J\!JU\‘J\ﬂL‘J\J
i ieyenel .
s R CCEL
\\g\ﬂ‘.ﬂ\ﬂ\quuﬁ\ﬂwJu\Lu\J .
g eIl
; P JJu\ﬂummB\uu
e

L
Lpeeeyele IS

Ly tene!

u\!mug\vﬂm LiL
Lo eneneust
o ‘l‘J\!J\y\ﬂ\ﬂ\'Ju\ﬁQ\]
PR RILLE Jeveitid

P
eiei e "
N R RIS WL
L

uu;uwmummu

PRI
@jeen®!

UL

[R. Sedgewick]

P erformance

Load o = M/N
Average search cost (hit) ~

Average search cost (miss) ~

Very delicate math analysis.
Don't use o above 0.8 .

P erformance

Expected worst case search cost:
O(log n)

Space requirements:

eM* (|key| + |info])

Deletions:

* What's the problem?

P erformance

Deletions:
* By marking

* By deleting the item and reinserting all items
in the chain.

Choosing the hash function

What properties do we want from a hash
function?

Double hashing

When searching for &, check locations n, (k) ,
h, (K)+ h,(K), h,(K)+2%h,(K),..until either
* K is found; or

« we find an empty location (X not present)
Must be careful about h, (k)

* Not 0.

* Not a divisor of M.

Almost as good as random probing.
Very difficult analysis.

Double hashing

o s
eI oL
LI -
oL
mmmuugmuuuwuumu
L -
{-meuuﬂuuuumuuuu
L
AU
L i
e

e

o

oo ey
uawmmuuﬂmumuuuu

i i

- Lo mmmeee®

bie
POy)
el nenes o ‘uw@émmummum
e

FECECLE

umwmmmummuu

Libiene:
mﬁmumu\'wum

L eeee®

@ eeel
uumuﬁﬁmwmuUJ

[R. Sedgewick]

P erformance

Load o = M/N
Average cost (hit) ~

Average cost (miss/insert) ~

Don't use o above 0.95 .

P erformance

Expected worst case search cost:
O(log n)

Space requirements:

eM* (|key| + |info])

Deletions:

¢ Only by marking.

» Eventually misses become very costly!

Open addressing performance

1000 —

) _

|

0.5 0.8 0.9 0.95 0.99
load

Rules of thumb

Sep chaining is idiot-proof but wastes space...
Linear probing uses space better, is fast when
tables are sparse, interacts well with paging
Double hashing is very space efficient, quite fast
(get initial hash and increment at the same time),
needs careful implementation, ...

For average cost t

* Max load for LP (1-1/sqrt(t))

* Max load for DH (1-1/t)

Choosing the hash function

What properties do we want from a hash
function?

* Want function to seem random

« Don’t want systematic nonrandom pattern in
selection of keys to lead to systematic
collisions

« Want hash value to depend on all values in
entire key and their positions

« Want universe to be distributed randomly

Choosing the hash function

Key = small integer
e ForMprime h(K) = K mod M
* For M non-prime
h(K) = floor(M {0.616161*K});

{x} = x - floor(x)

Based on mathematical fact that if A
is irrational, then for large n

{a}, {2a},..,{nA} distributed uniformly
across 0..1

More has h functions

Key = real in [0,1]
e Forany M
h(K) = floor (K*M);
Key = string
« Convert to integer
* S=a[0] a[1].... a[n]
* r -- radix of character code (e.g. 128 or 256)
e K=a[0] + a[1]*r +.... +a[n]*r"
» Can be computed efficiently using Horner's rule
» Make sure M doesn’t divide rk +/- a for any small a

Caveats

Hash functions are very often the cause of
performance bugs.

Hash functions often make the code not
portable.

Sometime a poor HF distribution-wise is
faster overall.

Always check where the time goes.

Universa hashing

Don't use a fixed hash function; for every run
choose a function from a small family.

Example:
h(K) = (a*k + b) mod M

a and b chosen u.a.r.in [1..M] and M prime
Main property
Pr(h(K1)=h(K2)) = 1/M

Properties

Theory:

* We make no assumptions about input. All proofs are
valid wrt our random choices.

Practice:

* If one choice of a and b turns out to be bad, make a
new choice.

» Must use hash schemes that allow re-hashing.

* Useful in critical applications.

Fingerprinting

Fingerprints are short tags for
larger objects.

Why fingerprint?

Probability is wrt our choice of a fpr scheme.

» Don’t need assumption about input.

Notations Keys are long or there are no keys (need
Q =The set of all objects uid's):
k=The lenght of the fingerprint + In AltaVista 100M urls @ 90 bytes/url = 9GB
f:Q — {01} A fingerprinting function 100M fprs @ 8 byte/fpr = 0.8GB
Pr‘oper‘fies * Find duplicate pages -- two pages are the same if
f(A)=f(B)= A=B they have the same fpr.
1
Pr(f(A)=f(B)A= B):§

Fingerprinting s chemes

Cryptographically secure:

* MD2, MD4, MD5, SHS, etc

« relatively slow

Rabin's scheme

* Based on polynomial arithmetic

 Very fast (1 table lookup + 1 xor + 1 shift) /byte
« Nice extra-properties

Rabin’s scheme

View each string A as a polynomial over z,:

A=10011 = A =x*4+x+1

Let p(t) be an irreducible polynomial of degree x
chosen uar
The fingerprint of a is

£(a) = A(t) mod P(t)
The probability of collision among n strings of
average length t (chosen by adversary!) is
about

n*2 t / 27k

10

Nice extra properties

Let ¢ = catenation. Then
f(a ¢ b) = f(f(a) ¢ b)
Can compute extensions of strings easily.

Bloom filters

Want to check only existence of key (e.g.
spelling dictionary, stolen credit cards, etc)
Small probability of error is OK.
Simple solution:
» Keep bit-table B
» Foreach K turn B (h (K)) on;
e SayKisiniff B(h(K)) ison;
» Works if there are no collisions! Must have
N = O(sqgrt(M))
« Collisions generate false drops

Better solution:

Use r hash functions.

e For each K turn on
B(h,(K), B(h,(K)),..,B(h,(K))

» Say K is in iff all hash bits are on.

« Probability of false drop is

(L-exp(-re))
r=alin(2)

With this choice, probability of false drop

* Optimum choice for r is

0.6185"*

Example

/usr/dict/words -- about 210KB, 25K
words

Use 30KB table

Load = 25/(30%8) ~ 0.104
Optimumr = 7

Probability of false drop

el%forr =7

el1.3%forr=4

Perfect hashing

The set of keys is given and never changes.
Find "simple” hash function so that there are
no collisions.
Example: reserved words in a compiler.
Hard to do but can be very useful.
Example (M ~ 6N)
(a K mod b) mod M
Takes time 0 (n® log n) to compute.

11

