CSEP 521 Applied Algorithms Spring 2005

Traveling Salesman Problem NP-Completeness

Reading

- Chapter 34
- Chapter 35

Outline for the Evening

- Traveling Salesman Problem
- Approximation algorithms
- Local search algorithms
- P and NP
- Reducibility and NP-Completeness
- Clique, Colorability, and other NPcomplete problems
- Coping with NP-completeness

Traveling Salesman Problem

- Input: Undirected Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a cost function C from E to the reals. $C(e)$ is the cost of edge e.
- Output: A cycle that visits each vertex exactly once and is minimum total cost.

Example

Lecture 2 - Traveling Salesman,

Example

$$
\text { Cost }=1+5+1+3+2+2=14
$$

Variations

- Hamiltonian Cycle
- Is there a cycle that visits each vertex exactly once
- Ignores costs
- Triangle inequality constraint
$-C(u, v) \leq C(u, x)+C(x, v)$
- Euclidean Traveling Salesman
- Vertices are points on the plane and the cost is the Euclidian distance between them
- Implies triangle inequality

Applications

- Telescope planning
- Route planning
- coin pickup
- mail delivery
- book order pickup in the Amazon warehouse
- Circuit board drilling

Why Traveling Salesman?

- Old well-studied problem
- Example of an NP-hard problem
- These problems are very hard to solve exactly
- No polynomial time algorithms known to exist
- Interesting and effective approximation algorithms
- Good practical algorithms
- Simple algorithms with provable approximation bounds

Approximation Alg. vs. Heuristic

- Approximation Algorithm
- There is a provable guarantee of how close the algorithm's result is to the optimal solution.
- Heuristic
- The algorithm finds a solutions but there is no guarantee how good the solution is.
- Heuristics often outperform provable approximation algorithms.

A Simple Approximation Algorithm

Euclidean distance $n(n-1) / 2$ edges

1. Find a Minimum Spanning Tree

2. Depth-First Search of Tree

Marking Order $=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{g}$

3. Connect Vertices in Marking Order

Marking Order $=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{g}$

Evaluation

- Time and Storage
- Time O(n² log n) with Kruskal's Algorithm
- Storage O(n^{2})
- Quality of Solution H
$-\mathrm{C}(\mathrm{H}) \leq 2 \mathrm{C}\left(\mathrm{H}^{*}\right)$ where H^{*} is an optimal tour
- This is a "2-approximation algorithm"
- Same approximation bound applies to case of triangle inequality

Proof of Approximation Bound

- Setup
- T minimum spanning tree
- W the depth-first walk of T
- H the tour computed by the algorithms
$-\mathrm{H}^{*}$ an optimal tour

Depth-First Walk


```
Depth-first walk = a,b,c,b,a,d,e,f,h,f,e,g,e,d,a
    Marking order = a,b,c, d,e,f,h,
    g
```

Lecture 2 - Traveling Salesman,

Proof of Approximation Bound

1. $C(W)=2 C(T)$
2. $\mathrm{C}(\mathrm{H}) \leq \mathrm{C}(\mathrm{W})$, triangle inquality
3. $C(H) \leq 2 C(T)$, last two lines
4. $\mathrm{C}(\mathrm{T}) \leq \mathrm{C}\left(\mathrm{H}^{*}\right)$, minus an edge H^{*} is a spanning tree
5. $C(H) \leq 2 C\left(H^{*}\right)$, last two lines

Solving TSP Exactly

- Branch-and-Bound
- $\mathrm{n}<25$?
- Linear Programming
- $\mathrm{n}<100$
- Cutting Plane Methods for Euclidian case
- $n<15,000$ with "concord"
- see http://www.math.princeton.edu/tsp/

Solving TSP Approximately

- 3/2 - approximation algorithm of Christofedes
- Polynomial approximation scheme for Euclidian TSP by Aurora (1998), Mitchell (1999)
- To get within ($1+\varepsilon$) of optimal can be done in time polynomial in $1 / \varepsilon$ and n.
- These are not practical

Solving TSP Approximately, Practically

- Local Search
- Lin-Kernighan method
- Simulated Annealing
- Genetic Algorithms
- Neural Networks

Local Search Algorithms

- Start with an initial solution that is usually easy to find, but is not necessarily good.
- Repeatedly modify the current solution to a better nearby one. Until no nearby one is better.

2-Opt Neighborhood

Lecture 2 - Traveling Salesman,

2-opt Algorithm

Lin-Kernighan (1973)

Find an initial tour T

1. For every pair of distinct edges $(x, y),(u, v)$ in T if $C(x, u)+C(y, v)<C(x, y)+C(u, v)$ then $\mathrm{T}:=\mathrm{T}-\{(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v})\}$ union $\{(\mathrm{x}, \mathrm{u}),(\mathrm{y}, \mathrm{v})\}$ exit for loop and go to 1
Return T

Example of LK

Euclidian case

Lecture 2 - Traveling Salesman,

Example of LK

Euclidian case

Lecture 2 - Traveling Salesman,

Example of LK

Euclidian case

Lecture 2 - Traveling Salesman,

Lin-Kernighan

- Empirical $O\left(\mathrm{n}^{2.2}\right)$ time
- Finds optimal in most examples < 100 points
- Excellent Implementations
- Can easily handle hundreds of thousands of points

Local Minimum Problem

- Local search can lead to a local minimum in the solution space, not necessarily a global minimum.

Solution Surface

Global minimum

NP-Completeness Theory

- Explains why some problems are hard and probably not solvable in polynomial time.
- Invented by Cook in 1971.
- Popularized in an important paper by Karp in 1972.
- Standardized by Garey and Johnson in 1979 in "Computers and Intractability: A Guide to the Theory of NP-Completeness".

P

- Complexity theory is the study of the time and storage needed to solve problems.
- Sorting requires $\Theta(\mathrm{n} \log \mathrm{n})$ time
- Minimum spanning tree can be solved in O (m log m) time
- Connected components can be solved in O(m) time.
- P is the class of problems that can be solved in polynomial time.
$-\mathrm{O}(\mathrm{n}), \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}\left(\mathrm{n}^{3}\right), \ldots$ time

Order Notation

- $f(n)=O(g(n))$ means $f(n) \leq c g(n)$ for some c.
$-1,000,000 n^{2}+2 n=O\left(n^{2}\right)$
$-n \log n=O\left(n^{3}\right)$
- $f(n)=\Omega(g(n))$ means $f(n) \geq c g(n)$ for some c
>0.
$-.0000001 n^{2}+2 n=\Omega\left(n^{2}\right)$
$-1,000 n^{2}=\Omega(n)$
- $f(n)=\Theta(g(n))$ means $f(n)=O(g(n))$ and $f(n)=$ $\Omega(\mathrm{g}(\mathrm{n}))$
$-a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots=\Theta\left(n^{k}\right)$ if $a_{k}>0$

Graph of Order of Magnitude

Lecture 2 - Traveling Salesman,

Graph of Order of Magnitude

Lecture 2 - Traveling Salesman,

Graph of Order of Magnitude

Worst Case Asymptotic Analysis

- Given problem find the best $\mathrm{t}(\mathrm{n})$ such that there is an algorithm solving the problem that runs in time $\mathrm{O}(\mathrm{t}(\mathrm{n})$) on all inputs of size n .
$-t(n)$ is an asymptotic upper bound
- Given a problem find the best $\mathrm{t}^{\prime}(\mathrm{n})$ such that every algorithm solving the problem runs in time $\Omega\left(\mathrm{t}^{\prime}(\mathrm{n})\right)$ on some input of length n .
$-\mathrm{t}^{\prime}(\mathrm{n})$ is an asymptotic lower bound

Bane of Worst Case Asymptotic Analysis

- Worst case
- A bad asymptotic algorithm in the worst case might do well on the common case.
- Asymptotic
- A good asymptotic algorithm might perform poorly on inputs of reasonable size.

Lecture 2 - Traveling Salesman,
NP-Completeness

NP

- NP stands for nondeterministic polynomial time.
- We consider the class of decision problems (yes/no problems).
- A nondeterministic algorithm is one that can make "guesses".
- A decision problem is in NP if it can be solved by a nondeterministic algorithm that runs in polynomial time.
- Some problems in NP seem very hard to solve.

Examples of Decision Problems in NP

- Decision TSP
- Input: Graph $G=(V, E)$ with costs on the edges and a budget B
- Output: Determine if there is a tour visiting each vertex exactly once of total cost $\leq \mathrm{B}$.
- Algorithm: Guess a tour and check its cost is under budget.
- Graph Coloring
- input: Graph $G=(V, E)$ and a number k.
- output: Determine if all vertices can be colored with k colors such that no two adjacent vertices have the same color.
- Algorithm: Guess a coloring and then check it.

CNF-SAT

- Input: A Boolean formula F in conjunctive normal form.

$$
(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

- Output: Determine if F is satisfiable, that is, there is some assignment to the variables that makes the formula F true.

$$
\begin{gathered}
x=1, y=0, z=1 \\
(1 \vee 0 \vee 1) \wedge(\neg 1 \vee 0 \vee 1) \wedge(\neg 1 \vee \neg 0 \vee \neg 1)
\end{gathered}
$$

- Algorithm: Guess an assignment and check it.

Subset Sum

- Input: Integers $a_{1}, a_{2}, \ldots, a_{n}, b$
- Output: Determine if there is subset

$$
X \subseteq\{1,2, \ldots, n\}
$$

with the property $\sum_{i \in X} a_{i}=b$

- Algorithm: Guess the subset X and check the sum adds up to b.

Decision Problems Reporting Problems Optimization Problems

- Example 1: Subset sum
- Decision Problem: Determine if a subset sum exists.
- Reporting Problem: If a subset sum exists, then report one.
- Optimization Problem: Find a subset whose sum is as close as possible to b, without going over b.

Decision Problems Reporting Problems Optimization Problems

- Example 2. Traveling Salesman
- Optimization problem - Find a tour that minimizes cost.
- Decision problem - Determine if a tour exists that comes under a specified budget.
- Reporting problem - If a tour exist that comes under a specified budget, find it.

Polynomial Time Equivalence of
 Decision, Reporting, Optimization

- If any one of Decision, Reporting, or Optimization can be solved in polynomial time then so can the others.
- Decision is easily reducible to Optimization
- Subset sum
- Traveling salesman

Reporting Reduces to Decision

- Subset sum:
- Let subset-sum (A, b) return true if some subset of A adds up to b. Otherwise it returns false.

```
Precondition: subset-sum ({\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}},b) is true
Report ({\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}},b)
X := the empty set;
for i=1 to n do
    if subset-sum({a,
        add i to X;
    b := b - a i;
```


Example

$$
\begin{aligned}
& 3,5,2,7,4,2, b=11 \\
& 5,2,7,4,2, b=11-3-->\text { yes, } X=\{3\}, b=8 \\
& 2,7,4,2, b=8-5-->\text { no } \\
& 7,4,2, b=8-2 \text {--> yes, } X=\{3,2\}, b=6 \\
& 4,2, b=6-7 \text {--> no } \\
& 2, b=6-4 \text {--> yes, } X=\{3,2,4\}, b=2 \\
& b=2-2 \text {--> yes, } X=\{3,2,4,2\}
\end{aligned}
$$

Optimization Reduces to Decision

- Traveling Salesman
- TS(G,B) which returns true if and only if G has a tour of length $\leq \mathrm{B}$. Assume costs are positive integers.

1. Find the minimum cost of a tour by binary search
2. Find the tour itself (reporting).
```
Find minimum cost of a tour
L := 0;
U := sum of all costs of edges;
while L + 1 < U do
    B = (L+U)/2;
    if TB(G,B) then U := B else L := B;
return U
```


The Relationship

Exercise

1. Assume the decision algorithm subset$\operatorname{sum}(A, b)$ is provided. Solve the optimization problem for subset sum.
2. Assume the decision problem TS(G,B) is given. Solve the reporting problem for traveling salesman.

Polynomial Time Reducibility

- Informal idea: A decision problem A is polynomial time reducible to a decision problem B if a polynomial time algorithm for B can be used to construct a polynomial time algorithm for A.
- Formally: A is polynomial time reducible to B if there is a function f computable in polynomial time such that for all x :
- x has A if and only if $f(x)$ has B
- If A polynomial time reducible to B and B solvable in polynomial time then so is A.

Block Diagram to Decide A from
 B

Algorithm to decide A

Transitivity of Polynomial Time Reduction

- Define: $A \leq_{p} B$ to mean that A is polynomial time reducible to B.
- Transitivity: $A \leq_{p} B$ and $B \leq_{p} C$ implies $A \leq_{p} C$
- Example:
- Every problem in NP is known to be polynomial time reducible to CNF-SAT.
- SAT is polynomial time reducible to Decision TSP
- Therefore, every problem in NP is polynomial time reducible to Decision TSP.

NP-Completeness Definition

- Definition: A decision problem A is NPcomplete if
$-A$ is in NP
- Every problem in NP is reducible to A in polynomial time.
- NP-complete problems seem to require exponential time, but there is no proof to date.

Cook's Theorem

- CNF-satisfiability is NP-complete
- Cook 1971, Levin 1973

Proof formalizes the notion of a nondeterministic algorithm as a nondeterministic Turing machine. It can be shown that a CNF-formula F can be produced in polynomial time that describes the operation of the nondeterministic Turning machine. The Turing machine halts in a "yes" state if and only if the formula F is satisfiable.

NP-Hardness

- Definition: A problem A is NP-hard if an NP-complete problem can be solved using A as an "oracle".
- Decision TSP is NP-complete
- TSP is NP-hard
- Oracle is like a constant time function call.

P vs NP

- Every problem in P is also in NP

$$
P \subseteq N P
$$

- Famous UnsolvedOpen Question:

$$
P=N P ?
$$

Probable Picture

Lecture 2 - Traveling Salesman,

Clique Decision Problem

- Input: Undirected Graph $G=(\mathrm{V}, \mathrm{E})$ and a number k .
- Output: Determine if G has a k-clique, that is, there is a set of vertices U of size k such that for each pair of vertices in U there is and edge in E between them.

Clique Example

4-clique

Lecture 2 - Traveling Salesman,
NP-Completeness

Clique is NP-Complete

- Clique is in NP
- Nondeterministic algorithm: guess k vertices then check that there is an edge between each pair of them.
- Clique is NP-hard
- We reduce CNF-satisfiability to Clique in polynomial time
- Given a CNF formula F we need to construct a graph G and a number k with the property that F is satisfiable if and only if G has a k-clique. The contstruction must be efficient, polynomial time.

Construction by Example

Lecture 2 - Traveling Salesman,

Construction by Example

Lecture 2 - Traveling Salesman,

General Construction

$$
\begin{aligned}
& F= \bigcap_{i=1}^{k} \bigcup_{j=1}^{m_{i}} a_{i j} \text { where } a_{i j} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} \\
& G=(V, E) \quad \text { where } \\
& V=\left\{a_{i j}: 1 \leq i \leq k, 1 \leq j \leq m_{i}\right\} \\
& E=\left\{\left\{a_{i j}, a_{i^{\prime} j^{\prime}}\right\}: i \neq i^{\prime}\right. \text { and, } \\
&\left.\quad a_{i j} \text { and } a_{i^{\prime} j^{\prime}} \text { are not complementary }\right\} \\
& k \text { is the number of clauses }
\end{aligned}
$$

The Reduction Argument

- We must show
- F satisfiable implies G has a clique of size k.
- Given a satisfying assignment for F, for each clause pick a literal that is satisfied. Those literals in the graph G form a k-clique.
- G has a clique of size k implies F is satisfiable.
- Given a k-clique in G, assign each literal in the clique to be 1. This yields a satisfying assignment to F.

Clique to Assignment

$$
F=(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

G

$$
y=0, z=1
$$

Lecture 2 - Traveling Salesman,

Assignment to Clique

$$
F=(x \vee y) \wedge(\neg x \vee y) \wedge(\neg x \vee \neg y) \wedge(x \vee \neg y)
$$

G has no 4-clique

Lecture 2 - Traveling Salesman,

3-CNF-Satifiability

- Input: A Boolean formula F with at most 3 literals per clause.
- Output: Determine if F is satisfiable.
- 3-CNF-Satisfiability is NP-complete
- This is probably the most used NPcomplete problem in reduction proofs showing other decision problems are NPhard.

Reduction by Example

Given $F=\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge F^{\prime}$
Construct $H=\left(x_{1} \vee z_{1}\right) \wedge\left(\neg x_{2} \vee \neg z_{1} \vee z_{2}\right)$

$$
\wedge\left(x_{3} \vee \neg z_{2} \vee z_{3}\right) \wedge\left(\neg x_{4} \vee \neg z_{3}\right) \wedge F^{\prime}
$$

F is satisfiable if and only if H is satisfiable.

$$
x_{2}=0 \text { satisfies the first clause of } F .
$$

$z_{1}=1, z_{2}=0, z_{3}=0$ satisfy clauses 1,3 , and 4 of H and $x_{2}=0$ satisfies the clause 2 of H.

3-Colorability

- Input: Graph $G=(\mathrm{V}, \mathrm{E})$.
- Output: Determine if all vertices can be colored with 3 colors such that no two adjacent vertices have the same color.

3-colorable

Not 3-colorable

3-CNF-Sat \leq p 3-Color

- Given a 3-CNF formula F we have to show how to construct in polynomial time a graph G such that:
- F is satisfiable implies G is 3-colorable
- G is 3-colorable implies F is satisfiable

The Gadget

- This is a classic reduction that uses a "gadget".
- Assume the outer vertices are colored at most two colors. The gadget is 3 -colorable if and only if the outer vertices are not all the same color.

Lecture 2 - Traveling Salesman, NP-Completeness

Properties of the Gadget

- Three colorable if and only if outer vertices not all the same color.

Not 3 colorable
Is 3 colorable

Reduction by Example

$$
F=(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
$$

Satisfaction Example $\quad x=1$

$$
F=(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z) \quad y=1
$$

Lecture 2 - Traveling Salesman,

Satisfaction Example $\quad x=1$

$$
F=(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z) \quad y=1
$$

Lecture 2 - Traveling Salesman,

Non-Satisfaction Example $x=0$

$$
F=(x \vee y \vee z) \wedge(\neg x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z) \quad y=0
$$

Lecture 2 - Traveling Salesman,

Naming the Gadget

General Construction

$$
\begin{aligned}
F & =\bigcap_{i=1}^{k}\left(a_{i 1} \vee a_{i 2} \vee a_{i 3}\right) \text { where } a_{i j} \in\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} \\
G & =(V, E) \quad \text { where } \\
V & =\{r, g, b\} \cup\left\{x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}\right\} \cup\left\{O_{i}, U_{i}, T_{i}, I_{i}, N_{i}, R_{i}: 1 \leq i \leq k\right\} \\
E & =\{\{r, g\},\{g, b\},\{b, r\}\} \\
& \cup\left\{\left\{x_{1}, \neg x_{1}\right\}, \ldots,\left\{x_{n}, \neg x_{n}\right\}\right\} \\
& \cup\left\{\left\{x_{1}, b\right\},\left\{\neg x_{1}, b\right\}, \ldots,\left\{x_{n}, b\right\},\left\{\neg x_{n}, b\right\}\right\} \\
& \cup\left\{\left\{O_{i}, I_{i}\right\},\left\{U_{i}, N_{i}\right\},\left\{T_{i}, R_{i}\right\},\left\{I_{i}, N_{i}\right\},\left\{N_{i}, R_{i}\right\},\left\{R_{i}, I_{i}\right\}: 1 \leq i \leq k\right\} \\
& \cup\left\{\left\{a_{i 1}, O_{i}\right\},\left\{a_{i 2}, U_{i}\right\},\left\{a_{i 3}, T_{i}\right\}: 1 \leq i \leq k\right\} \\
& \cup\left\{\left\{O_{i}, g\right\},\left\{U_{i}, g\right\},\left\{T_{i}, g\right\}: 1 \leq i \leq k\right\}
\end{aligned}
$$

Reductions

Exact Cover

- Input: A set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and subsets

$$
S_{1}, S_{2}, \ldots, S_{m} \subseteq U
$$

- Output: Determine if there is set of pairwise disjoint sets that union to U, that is, a set X such that:

$$
\begin{aligned}
& X \subseteq\{1,2, \ldots, m\} \\
& i, j \in X \text { and } i \neq j \text { implies } S_{i} \cap S_{j}=\phi \\
& \bigcup_{i \in X} S_{i}=U
\end{aligned}
$$

Example of Exact Cover

$$
\begin{gathered}
U=\{a, b, c, d, e, f, g, h, i\} \\
\{a, c, e\},\{a, f, g\},\{b, d\},\{b, f, h\},\{e, h, i\},\{f, h, i\},\{d, g, i\}
\end{gathered}
$$

Exact Cover

$$
\{a, c, e\},\{b, f, h\},\{d, g, i\}
$$

3-Partition

- Input: A set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ and number B with the properties that $B / 4<a_{i}<B / 2$ and

$$
\sum_{i=1}^{3 m} a_{i}=m B .
$$

- Output: Determine if A can be partitioned into S_{1}, S_{2}, \ldots, S_{m} such that for all i

$$
\sum_{j \in S_{i}} a_{j}=B
$$

Note: each S_{i} must contain exactly 3 elements.

Example of 3-Partition

- $A=\{26,29,33,33,33,34,35,36,41\}$
- $B=100, m=3$
- 3-Partition
-26, 33, 41
- 29, 36, 35
- 33, 33, 34

Bin Packing

- Input: A set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and numbers B (capacity) and K (number of bins).
- Output: Determine if A can be partitioned into $S_{1}, S_{2}, \ldots, S_{K}$ such that for all i

$$
\sum_{j \in S_{i}} a_{j} \leq B
$$

Bin Packing Example

- $A=\{2,2,3,3,3,4,4,4,5,5,5\}$
- $B=10, K=4$
- Bin Packing

$$
\begin{aligned}
& -3,3,4 \\
& -2,3,5 \\
& -5,5 \\
& -2,4,4
\end{aligned} \quad \text { Perfect fit! }
$$

Exercise - Argue NP-Completeness

1. Independent Set

- Input: Undirected graph $G=(V, E)$ and a number k.
- Output: Determine if there is an independent set of size k . X , contained in V , is independent if for all i, j in X there is no edge in G from i to j.

2. Equal Subset-Sum

- Input: $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ positive integers
- Output: Determine if there is a set I such that

$$
\sum_{i \in I} a_{i}=\sum_{j \notin I} a_{j}
$$

Coping with NP-completeness

- You have encountered a Hard Problem
- Maybe it is NP-hard
- Books
- Garey and Johnson
- Websites
- http://www.nada.kth.se/~viggo/problemlist/compendium.h
- Research papers
- Maybe you'll have to do your own reduction
- Can't determine NP-hardness, then it is probably hard in some way.
- Modify the problem to be more tractable

Boundary Between P and NP

- Satisfiability
- 2-CNF-SAT is in P
-3-CNF-SAT is NP-complete
- Coloring
- 2 -COLOR is in P
- 3-COLOR is NP-complete
- Planar Colorability
- Planar graphs are always 4-colorable
- 3-PLANAR-COLOR is NP-complete

Boundary Continued

- Independent Set
- Maximum independent set is NP-hard
- Maximal independent set is in P
- Cutting a graph
- Maximum cut in a graph is NP-hard
- Minimum cut in a graph is in P (equivalent to Max Flow)
- Spanning Tree
- Minimum spanning tree is in P
- Degree constrained spanning tree is NP-hard
- Bounded diameter spanning tree is NP-hard

Load Balanced Spanning Tree

- Input: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
- Output: A number k and a spanning tree (V, T) of degree k . Furthermore, there is no spanning tree of degree $<k$.

Spanning Tree of Degree 3

Spanning Tree of Degree 2

LBST Decision Problem

- Input: An undirected graph $G=(V, E)$ and number k.
- Output: Determine if G has a spanning tree of degree k.

Hamiltonian Path Decision Problem

- Input: Undirected Graph G =(V,E).
- Output: Determine if there is a path in G that visits each node exactly once.
- Hamiltonian Path is known to be NPcomplete

Hamiltonian Path is Polynomial time Reducible to Spanning Tree of Degree 2

- If there an algorithm to quickly determine if a graph has a spanning tree of degree 2 then there is an algorithm to quickly solve the Hamiltonian path problem.
- A spanning tree of degree 2 is a Hamiltonian path!
- These problems are essentially the same problem.

Lessons When Coping

- Lesson 1. Any problem that is in NP may be NP-complete.
- Lesson 2. Any problem in NP may be in P.
- Lesson 3. You may not be able to determine either
- factoring is open
- graph isomorphism is open

