

Variations

- Hamiltonian Cycle
 - Is there a cycle that visits each vertex exactly once
 Ignores costs
- Triangle inequality constraint
- − C(u,v) ≤ C(u,x) + C(x,v)
 Euclidean Traveling Salesman
 - Vertices are points on the plane and the cost is the Euclidian distance between them
 - Implies triangle inequality

Lecture 2 - Traveling Salesman, NP-Completeness

Applications

- Telescope planning
- Route planning
 - coin pickup
 - mail delivery
 - book order pickup in the Amazon warehouse
- · Circuit board drilling

Lecture 2 - Traveling Salesman, NP-Completeness 8

7

21

20

Solving TSP Approximately,

Practically

Lecture 2 - Traveling Salesman, NP-Completeness

Local Search

- Lin-Kernighan method

Simulated Annealing

· Genetic Algorithms

Neural Networks

Decision Problems Reporting Problems Optimization Problems

- Example 2. Traveling Salesman
 - Optimization problem Find a tour that minimizes cost.
 - Decision problem Determine if a tour exists that comes under a specified budget.
 - Reporting problem If a tour exist that comes under a specified budget, find it.

Lecture 2 - Traveling Salesman NP-Completeness

47

Lecture 2 - Traveling Salesman, NP-Completeness 60

Hamiltonian Path Decision Problem

- Input: Undirected Graph G =(V,E).
- Output: Determine if there is a path in G that visits each node exactly once.
- Hamiltonian Path is known to be NPcomplete

Lecture 2 - Traveling Salesman, NP-Completeness 98

100

Hamiltonian Path is Polynomial time Reducible to Spanning Tree of Degree 2
If there an algorithm to quickly determine if a graph has a spanning tree of degree 2 then there is an algorithm to quickly solve the Hamiltonian path problem.
A spanning tree of degree 2 is a Hamiltonian

- path!
- These problems are essentially the same problem.

Lecture 2 - Traveling Salesman, NP-Completeness

99

 Lesson 1. Any problem that is in NP may be NP-complete.

Lessons When Coping

- Lesson 2. Any problem in NP may be in P.
- Lesson 3. You may not be able to determine either
 - factoring is open
 - graph isomorphism is open

Lecture 2 - Traveling Salesman, NP-Completeness