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Reading

• Chapter 34
• Chapter 35
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Outline for the Evening

• Traveling Salesman Problem
– Approximation algorithms
– Local search algorithms

• P and NP
• Reducibility and NP-Completeness
• Clique, Colorability, and other NP-

complete problems
• Coping with NP-completeness
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Traveling Salesman Problem

• Input: Undirected Graph G = (V,E) and 
a cost function C from E to the reals. 
C(e) is the cost of edge e.

• Output: A cycle that visits each vertex 
exactly once and is minimum total cost.

Lecture 2 - Traveling Salesman, 
NP-Completeness

5

Example

1 3
2

15

4 2

2 4
1

2

2

Lecture 2 - Traveling Salesman, 
NP-Completeness

6

Example

1 3
2

15

4 2

2 4
1

2

2

Cost  = 1 + 5 + 1 + 3 + 2 + 2 = 14
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Variations

• Hamiltonian Cycle
– Is there a cycle that visits each vertex exactly once
– Ignores costs

• Triangle inequality constraint
– C(u,v) < C(u,x) + C(x,v)

• Euclidean Traveling Salesman
– Vertices are points on the plane and the cost is 

the Euclidian distance between them
– Implies triangle inequality
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Applications

• Telescope planning
• Route planning

– coin pickup

– mail delivery
– book order pickup in the Amazon 

warehouse

• Circuit board drilling
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Why Traveling Salesman?

• Old well-studied problem

• Example of an NP-hard problem
– These problems are very hard to solve exactly
– No polynomial time algorithms known to exist

• Interesting and effective approximation 
algorithms
– Good practical algorithms
– Simple algorithms with provable approximation 

bounds
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Approximation Alg. vs. Heuristic

• Approximation Algorithm
– There is a provable guarantee of how close 

the algorithm’s result is to the optimal 
solution.

• Heuristic
– The algorithm finds a solutions but there is 

no guarantee how good the solution is.

– Heuristics often outperform provable 
approximation algorithms.
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A Simple Approximation Algorithm
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Euclidean distance
n(n-1)/2 edges
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1. Find a Minimum Spanning Tree
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2. Depth-First Search of Tree

a
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f g

e

d

Marking Order = a, b, c, d, e, f, h, g
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3. Connect Vertices in Marking 
Order

a

h

c

b

f g

e

d

Marking Order = a, b, c, d, e, f, h, g
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Evaluation

• Time and Storage
– Time O(n2 log n) with Kruskal’s Algorithm
– Storage O(n2)

• Quality of Solution H
– C(H) < 2 C(H*) where H* is an optimal tour

– This is a “2-approximation algorithm”

• Same approximation bound applies to 
case of triangle inequality
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Proof of Approximation Bound 

• Setup
– T minimum spanning tree
– W the depth-first walk of T

– H the tour computed by the algorithms
– H* an optimal tour
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Depth-First Walk

a

h

c

b

f g

e

d

Depth-first walk = a,b,c,b,a,d,e,f,h,f,e,g,e,d,a
Marking order = a,b,c,    d,e,f,h,     g 

C(W) = 2 C(T)
C(H) < C(W)
triangle inequality
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Proof of Approximation Bound 

1. C(W) = 2 C(T)
2. C(H) < C(W), triangle inquality
3. C(H) < 2 C(T), last two lines
4. C(T) < C(H*), minus an edge H* is a 

spanning tree
5. C(H) < 2 C(H*), last two lines
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Solving TSP Exactly

• Branch-and-Bound
• n < 25?

• Linear Programming
• n < 100

• Cutting Plane Methods for Euclidian 
case

• n < 15,000 with “concord”
• see http://www.math.princeton.edu/tsp/
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Solving TSP Approximately

• 3/2 – approximation algorithm of 
Christofedes

• Polynomial approximation scheme for 
Euclidian TSP by Aurora (1998), 
Mitchell (1999)
– To get within (1+ε) of optimal can be done 

in time polynomial in 1/ε and n.
– These are not practical
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Solving TSP Approximately, 
Practically

• Local Search
– Lin-Kernighan method

• Simulated Annealing
• Genetic Algorithms
• Neural Networks

Lecture 2 - Traveling Salesman, 
NP-Completeness

22

Local Search Algorithms

• Start with an initial solution that is 
usually easy to find, but is not 
necessarily good.

• Repeatedly modify the current solution 
to a better nearby one.  Until no nearby 
one is better.
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2-Opt Neighborhood

u
x

y

v

u
x

y

v

2-opt(x,y,u,v)
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2-opt Algorithm
Lin-Kernighan (1973)

Find an initial tour T
1. For every pair of distinct edges (x,y), (u,v) in T

if C(x,u) + C(y,v) < C(x,y) + C(u,v) then
T := T – {(x,y),(u,v)} union {(x,u),(y,v)}
exit for loop and go to 1

Return T
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Example of LK
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Euclidian case
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Example of LK
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Example of LK
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Example of LK
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Example of LK

a

h

c

b

f g

e

d

Euclidian case

Lecture 2 - Traveling Salesman, 
NP-Completeness

30

Example of LK
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Example of LK
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Euclidian case
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Lin-Kernighan

• Empirical O(n2.2) time
• Finds optimal in most examples < 100 

points
• Excellent Implementations

– Can easily handle hundreds of thousands 
of points
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Local Minimum Problem

• Local search can lead to a local minimum in 
the solution space, not necessarily a global 
minimum. 

Local minimum
Global minimum

Solution Surface
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NP-Completeness Theory

• Explains why some problems are hard and 
probably not solvable in polynomial time.

• Invented by Cook in 1971.
• Popularized in an important paper by Karp in 

1972.

• Standardized by Garey and Johnson in 1979 
in “Computers and Intractability: A Guide to 
the Theory of NP-Completeness”.
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P

• Complexity theory is the study of the time and 
storage needed to solve problems.
– Sorting requires Θ(n log n) time
– Minimum spanning tree can be solved in O(m log 

m) time
– Connected components can be solved in O(m) 

time.

• P is the class of problems that can be solved 
in polynomial time.
– O(n), O(n2), O(n3), ... time
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Order Notation

• f(n) = O(g(n)) means f(n) < c g(n) for some c.
– 1,000,000 n2 + 2n = O(n2)
– n log n = O(n3)

• f(n) = Ω(g(n)) means f(n) > c g(n) for some c 
> 0.
– .0000001 n2 + 2n = Ω(n2)
– 1,000 n2 = Ω(n) 

• f(n) = Θ(g(n)) means f(n) = O(g(n)) and f(n)  = 
Ω(g(n))
– aknk + ak-1nk-1 + ... = Θ(nk)  if ak > 0
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Graph of Order of Magnitude

n

n2

O(n2)
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Graph of Order of Magnitude

n

n2

Ω(n2)
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Graph of Order of Magnitude

n

n2

Θ(n2)
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Worst Case Asymptotic Analysis

• Given problem find the best t(n) such that 
there is an algorithm solving the problem that 
runs in time O(t(n)) on all inputs of size n.
– t(n) is an asymptotic upper bound

• Given a problem find the best t’(n) such that 
every algorithm solving the problem runs in 
time Ω(t’(n)) on some input of length n.
– t’(n) is an asymptotic lower bound
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Bane of Worst Case Asymptotic 
Analysis

• Worst case
– A bad asymptotic algorithm in the worst case 

might do well on the common case.

• Asymptotic
– A good asymptotic algorithm might perform poorly 

on inputs of reasonable size.

crossover is large
Lecture 2 - Traveling Salesman, 

NP-Completeness
42

NP

• NP stands for nondeterministic polynomial time.

• We consider the class of decision problems 
(yes/no problems).

• A nondeterministic algorithm is one that can 
make “guesses”.

• A decision problem is in NP if it can be solved 
by a nondeterministic algorithm that runs in 
polynomial time.

• Some problems in NP seem very hard to solve.
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Examples of Decision Problems in NP
• Decision TSP

– Input: Graph  G = (V,E) with costs on the edges 
and a budget B

– Output: Determine if there is a tour visiting each 
vertex exactly once of total cost < B.

– Algorithm: Guess a tour and check its cost is 
under budget.

• Graph Coloring
– input: Graph G = (V,E) and a number k.
– output: Determine if all vertices can be colored 

with k colors such that no two adjacent vertices 
have the same color.

– Algorithm: Guess a coloring and then check it.
Lecture 2 - Traveling Salesman, 
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CNF-SAT

• Input: A Boolean formula F in conjunctive 
normal form. 

• Output: Determine if F is satisfiable, that is, 
there is some assignment to the variables 
that makes the formula F true.

• Algorithm: Guess an assignment and check it.

)()()( zyxzyxzyx ¬∨¬∨¬∧∨∨¬∧∨∨

)101()101()101( ¬∨¬∨¬∧∨∨¬∧∨∨
1,0,1 === zyx
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Subset Sum

• Input: Integers
• Output: Determine if there is subset

• Algorithm: Guess the subset X and 
check the sum adds up to b.

baaa n,,...,, 21

},...,2,1{ nX ⊆

with the property ba
Xi

i =�
∈
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Decision Problems
Reporting Problems

Optimization Problems

• Example 1: Subset sum 
– Decision Problem: Determine if a subset 

sum exists.

– Reporting Problem: If a subset sum exists, 
then report one.

– Optimization Problem: Find a subset whose 
sum is as close as possible to b, without 
going over b.

Lecture 2 - Traveling Salesman, 
NP-Completeness

47

Decision Problems
Reporting Problems

Optimization Problems
• Example 2. Traveling Salesman

– Optimization problem – Find a tour that 
minimizes cost.

– Decision problem – Determine if a tour 
exists that comes under  a specified 
budget.

– Reporting problem - If a tour exist that 
comes under a specified budget, find it.
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Polynomial Time Equivalence of 
Decision, Reporting, Optimization
• If any one of Decision, Reporting, or 

Optimization can be solved in 
polynomial time then so can the others.

• Decision is easily reducible to 
Optimization
– Subset sum
– Traveling salesman
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Reporting Reduces to Decision

• Subset sum:
– Let subset-sum(A,b) return true if some subset of 

A adds up to b.  Otherwise it returns false.

Precondition: subset-sum ({a1,…,an},b) is true 
Report ({a1,…,an},b) 
X := the empty set;
for i = 1 to n do

if subset-sum({ai+1,…,an},b - ai) then
add i to X;
b := b - ai;
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Example
3, 5, 2, 7, 4, 2, b = 11 

5, 2, 7, 4, 2, b = 11-3 --> yes, X = {3}, b = 8

2, 7, 4, 2, b = 8-5 --> no

7, 4, 2, b = 8-2 --> yes, X = {3,2}, b = 6

4, 2, b = 6-7 --> no

2, b = 6-4 --> yes, X = {3,2,4}, b = 2

b = 2 -2 --> yes, X ={3,2,4,2}
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Optimization Reduces to Decision
• Traveling Salesman

– TS(G,B) which returns true if and only if G has a 
tour of length < B.  Assume costs are positive 
integers.

1. Find the minimum cost of a tour by binary search
2. Find the tour itself (reporting).

Find minimum cost of a tour
L := 0;
U := sum of all costs of edges;
while L + 1 < U do

B = (L+U)/2;
if TB(G,B) then U := B else L := B;

return U
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The Relationship

Decision

Reporting

Optimization
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Exercise

1. Assume the decision algorithm subset-
sum(A,b) is provided.  Solve the 
optimization problem for subset sum.

2. Assume the decision problem TS(G,B) 
is given.  Solve the reporting problem 
for traveling salesman.

Lecture 2 - Traveling Salesman, 
NP-Completeness

54

Polynomial Time Reducibility
• Informal idea: A decision problem A is 

polynomial time reducible to a decision 
problem B if a polynomial time algorithm for B
can be used to construct a polynomial time 
algorithm for A.

• Formally: A is polynomial time reducible to B if 
there is a function f computable in polynomial 
time such that for all x:
– x has A if and only if f(x) has B

• If A polynomial time reducible to B and B
solvable in polynomial time then so is A. 
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Block Diagram to Decide A from 
B

Algorithm 
to compute f

x Algorithm 
to decide B

f(x) f(x) has B? x has A?

Algorithm to decide A
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Transitivity of Polynomial Time 
Reduction

• Define:              to mean that A is polynomial 
time reducible to B. 

• Transitivity:               and               implies
• Example: 

– Every problem in NP is known to be polynomial 
time reducible to CNF-SAT.

– SAT is polynomial time reducible to Decision TSP
– Therefore, every problem in NP is polynomial time 

reducible to Decision TSP.

BA P≤

BA P≤ CB P≤ CA P≤
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NP-Completeness Definition

• Definition: A decision problem A is NP-
complete if
– A is in NP
– Every problem in NP is reducible to A in 

polynomial time. 

• NP-complete problems seem to require 
exponential time, but there is no proof to 
date.
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Cook’s Theorem
• CNF-satisfiability is NP-complete

– Cook 1971, Levin 1973

Proof formalizes the notion of a nondeterministic algorithm
as a nondeterministic Turing machine.  It can be shown  
that a CNF-formula F can be produced in polynomial time
that describes the operation of the nondeterministic 
Turning machine.  The Turing machine halts in a “yes” 
state if and only if the formula F is satisfiable.   
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NP-Hardness

• Definition: A problem A is NP-hard if an 
NP-complete problem can be solved 
using A as an “oracle”.
– Decision TSP is NP-complete
– TSP is NP-hard

• Oracle is like a constant time function 
call.
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P vs NP

• Every problem in P is also in NP

• Famous UnsolvedOpen Question: 

NPP ⊆

?NPP =
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Probable Picture

P

NP-Complete

NP
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Clique Decision Problem

• Input: Undirected Graph G = (V,E) and 
a number k.

• Output: Determine if G has a k-clique, 
that is, there is a set of vertices U of 
size k such that for each pair of vertices 
in U there is and edge in E between 
them. 
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Clique Example

4-clique
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Clique is NP-Complete

• Clique is in NP
– Nondeterministic algorithm: guess k vertices then 

check that there is an edge between each pair of 
them.  

• Clique is NP-hard
– We reduce CNF-satisfiability to Clique in polynomial 

time
– Given a CNF formula F we need to construct a 

graph G and a number k with the property that F is
satisfiable if and only if G has a k-clique.  The
contstruction must be efficient, polynomial time.
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Construction by Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

-x y z

-zz

y

x

-y

-x

G

clauseliteral
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Construction by Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

-x y z

-zz

y

x

-y

-x

1,0,1 === zyx

G
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General Construction

��
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aF
1 1= =

= },,,,{ 11 nnij xxxxa ¬¬∈ �where

),( EVG = where

}1,1:{ ii j mjkiaV ≤≤≤≤=
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''

''

arycomplementnotareaanda

andiiaaE

jiij

jiij ≠=

clausesofnumbertheisk
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The Reduction Argument

• We must show
– F satisfiable implies G has a clique of size 

k.
• Given a satisfying assignment for F, for each 

clause pick a literal that is satisfied.   Those 
literals in the graph G form a k-clique.

– G has a clique of size k implies F is 
satisfiable.

• Given a k-clique in G, assign each literal in the 
clique to be 1.  This yields a satisfying 
assignment to F.
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Clique to Assignment
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

-x y z

-zz

y

x

-y

-x

1,0 == zy

G
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Assignment to Clique

-x y

y

x

-y

-x

G

)()()()( yxyxyxyxF ¬∨∧¬∨¬∧∨¬∧∨=

G has no 4-clique

x -y
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3-CNF-Satifiability

• Input: A Boolean formula F with at most 
3 literals per clause.

• Output: Determine if F is satisfiable.

• 3-CNF-Satisfiability is NP-complete
– This is probably the most used NP-

complete problem in reduction proofs 
showing other decision problems are NP-
hard.
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Reduction by Example
')( 4321 FxxxxF ∧¬∨∨¬∨=

')()(

)()(

34323

21211

Fzxzzx

zzxzxH

∧¬∨¬∧∨¬∨∧
∨¬∨¬∧∨=

Given

Construct

F is satisfiable if and only if H is satisfiable.

02 =x satisfies the first clause of F.

0,0,1 321 === zzz satisfy clauses 1,3, and 4 of H and

02 =x satisfies the clause 2 of H.
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3-Colorability

• Input: Graph G = (V,E).

• Output: Determine if all vertices can be 
colored with 3 colors such that no two 
adjacent vertices have the same color.

3-colorable Not 3-colorable
Lecture 2 - Traveling Salesman, 
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3-CNF-Sat <P 3-Color

• Given a 3-CNF formula F we have to 
show how to construct in polynomial 
time a graph G such that:
– F is satisfiable implies G is 3-colorable
– G is 3-colorable implies F is satisfiable
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The Gadget
• This is a classic reduction that uses a “gadget”.
• Assume the outer vertices are colored at most two 

colors.  The gadget is 3-colorable if and only if the 
outer vertices are not all the same color.
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Properties of the Gadget

Not 3 colorable Is 3 colorable

• Three colorable if and only if outer 
vertices not all the same color.
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Reduction by Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r
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Satisfaction Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

1

1

=
=
=

z

y

x



14

Lecture 2 - Traveling Salesman, 
NP-Completeness

79

Satisfaction Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

1

1

=
=
=

z

y
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Non-Satisfaction Example
)()()( zyxzyxzyxF ¬∨¬∨¬∧∨∨¬∧∨∨=

x -x y -y -zz

b

g

r

0

0

0

=
=
=

z

y

x
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Naming the Gadget

I N

R

T

UO
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General Construction
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Reductions

CNF-Sat

3-CNF-Sat Clique

3-Color

Exact Cover

Subset Sum

3-Partition

Bin Packing
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Exact Cover

• Input: A set                            and subsets

• Output: Determine if there is set of pairwise 
disjoint sets that union to U, that is, a set X
such that:

},,,{ 21 nuuuU �=
USSS m ⊆,,, 21 �

US

SSimpliesjiandXji

mX

Xi
i

ji

=

=∩≠∈
⊆

∈
�

�

φ,

},,2,1{
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Example of Exact Cover

},,,,,,,,{ ihgfedcbaU =

},,{} ,,,{} ,,,{} ,,,{} ,,{} ,,,{} ,,,{ igdihfihehfbdbgfaeca

},,{} ,,,{} ,,,{ igdhfbeca

Exact Cover
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3-Partition

• Input: A set of numbers                              and 
number B with the properties that  B/4 < ai < B/2 
and

• Output: Determine if A can be partitioned into S1, 
S2,…, Sm such that for all i

},,,{ 321 maaaA �=

.
3

1

mBa
m

i
i =�

=

.Ba
iSj

j =�
∈

Note: each Si must contain exactly 3 elements.
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Example of 3-Partition

• A = {26, 29, 33, 33, 33, 34, 35, 36, 41}
• B = 100, m = 3
• 3-Partition

– 26, 33, 41
– 29, 36, 35 

– 33, 33, 34
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Bin Packing

• Input: A set of numbers                              
and numbers B (capacity) and K (number 
of bins). 

• Output: Determine if A can be partitioned 
into S1, S2,…, SK such that for all i

},,,{ 21 maaaA �=

.Ba
iSj

j ≤�
∈
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Bin Packing Example

• A = {2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5}
• B = 10, K = 4
• Bin Packing

– 3, 3, 4
– 2, 3, 5

– 5, 5
– 2, 4, 4

Perfect fit!
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Exercise – Argue NP-Completeness
1.  Independent Set

– Input: Undirected graph G = (V,E) and a number 
k.

– Output: Determine if there is an independent set 
of size k.  X, contained in V, is independent if for 
all i,j in X there is no edge in G from i to j.

2. Equal Subset-Sum
– Input: {a1, a2, ... , an} positive integers
– Output: Determine if there is a set I such that

��
∉∈

=
Ij

j
Ii

i aa
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Coping with NP-completeness
• You have encountered a Hard Problem
• Maybe it is NP-hard

– Books
• Garey and Johnson

– Websites 
• http://www.nada.kth.se/~viggo/problemlist/compendium.h

tml

– Research papers
– Maybe you’ll have to do your own reduction

• Can’t determine NP-hardness, then it is 
probably hard in some way.

• Modify the problem to be more tractable
Lecture 2 - Traveling Salesman, 

NP-Completeness
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Boundary Between P and NP

• Satisfiability
– 2-CNF-SAT is in P
– 3-CNF-SAT is NP-complete

• Coloring
– 2-COLOR is in P
– 3-COLOR is NP-complete

• Planar Colorability
– Planar graphs are always 4-colorable
– 3-PLANAR-COLOR is NP-complete
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Boundary Continued

• Independent Set
– Maximum independent set is NP-hard
– Maximal independent set is in P

• Cutting a graph
– Maximum cut in a graph is NP-hard
– Minimum cut in a graph is in P (equivalent to Max 

Flow)

• Spanning Tree
– Minimum spanning tree is in P
– Degree constrained spanning tree is NP-hard
– Bounded diameter spanning tree is NP-hard
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Load Balanced Spanning Tree

• Input: An undirected graph G = (V,E).
• Output: A number k and a spanning tree 

(V,T) of degree k. Furthermore, there is 
no spanning tree of degree < k.
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Spanning Tree of Degree 3

1
2

3

4

5

6

7
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Spanning Tree of Degree 2

1
2

3

4

5

6

7



17

Lecture 2 - Traveling Salesman, 
NP-Completeness

97

LBST Decision Problem

• Input: An undirected graph G = (V,E) 
and number k.

• Output: Determine if G has a spanning 
tree of degree k. 

Lecture 2 - Traveling Salesman, 
NP-Completeness

98

Hamiltonian Path Decision 
Problem

• Input: Undirected Graph G =(V,E).
• Output: Determine if there is a path in G 

that visits each node exactly once.

• Hamiltonian Path is known to be NP-
complete
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Hamiltonian Path is Polynomial 
time Reducible to Spanning Tree 

of Degree 2

• If there an algorithm to quickly determine 
if a graph has a spanning tree of degree 
2 then there is an algorithm to quickly 
solve the Hamiltonian path problem.
– A spanning tree of degree 2 is a Hamiltonian 

path!
– These problems are essentially the same 

problem.
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Lessons  When Coping

• Lesson 1. Any problem that is in NP 
may be NP-complete.

• Lesson 2. Any problem in NP may be in 
P.

• Lesson 3. You may not be able to 
determine either
– factoring is open

– graph isomorphism is open


