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Traveling Salesman Problem
— Approximation algorithms
— Local search algorithms

P and NP
Reducibility and NP-Completeness

Clique, Colorability, and other NP-
complete problems

Coping with NP-completeness

Lecture 2 - Traveling Salesman,
NP-Completeness

Traveling Salesman Problem

e Input: Undirected Graph G = (V,E) and
a cost function C from E to the reals.
C(e) is the cost of edge e.

» Output: A cycle that visits each vertex
exactly once and is minimum total cost.
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Example
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Example

Cost =1+5+1+3+2+2=14
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Variations

Hamiltonian Cycle
— Is there a cycle that visits each vertex exactly once
— Ignores costs
 Triangle inequality constraint
— C(u,v) £ C(u,x) + C(x,v)
¢ Euclidean Traveling Salesman

— Vertices are points on the plane and the cost is
the Euclidian distance between them

— Implies triangle inequality
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Applications

» Telescope planning
* Route planning

— coin pickup

— mail delivery

— book order pickup in the Amazon
warehouse

* Circuit board drilling
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Why Traveling Salesman?

» Old well-studied problem

» Example of an NP-hard problem
— These problems are very hard to solve exactly
— No polynomial time algorithms known to exist

« Interesting and effective approximation
algorithms

— Good practical algorithms

— Simple algorithms with provable approximation
bounds
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Approximation Alg. vs. Heuristic

» Approximation Algorithm

— There is a provable guarantee of how close
the algorithm’s result is to the optimal
solution.

» Heuristic

— The algorithm finds a solutions but there is
no guarantee how good the solution is.

— Heuristics often outperform provable
approximation algorithms.
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A Simple Approximation Algorithm

Euclidean distance

. . n(n-1)/2 edges
() ®
(© ® o
(h)
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1. Find a Minimum Spanning Tree

:
M
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2. Depth-First Search of Tree

./
Marking Order=a, b, ¢, d, e, f, h, g
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3. Connect Vertices in Marking
Order

V

Marking Order =a, b, ¢, d, e, f, h, g

/
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Evaluation

e Time and Storage
— Time O(n? log n) with Kruskal’s Algorithm
— Storage O(n?)

 Quality of Solution H
— C(H) < 2 C(H*) where H* is an optimal tour
— This is a “2-approximation algorithm”

e Same approximation bound applies to
case of triangle inequality
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Proof of Approximation Bound

» Setup
— T minimum spanning tree
— W the depth-first walk of T
— H the tour computed by the algorithms
— H* an optimal tour
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Depth-First Walk

C(W)=2C(T)
C(H) = C(W)
triangle inequality
7
(e

3

Depth-first walk = a,b,c,b,a,d, e, f,h,f,e g, e da
Marking order = a, b, c, d,e f,h g
Lecture 2 - Traveling Salesman, 17
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Proof of Approximation Bound

cw) =2 c(T)
C(H) < C(W), triangle inquality

C(H) <2 C(T), last two lines

C(T) < C(H*), minus an edge H* is a
spanning tree

5. C(H) < 2 C(H*), last two lines

R A
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Solving TSP Exactly

e Branch-and-Bound
e n<25?
 Linear Programming
+n<100
 Cutting Plane Methods for Euclidian
case
* n < 15,000 with “concord”
* see http://www.math.princeton.edu/tsp/
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Solving TSP Approximately

 3/2 — approximation algorithm of
Christofedes

» Polynomial approximation scheme for
Euclidian TSP by Aurora (1998),
Mitchell (1999)

— To get within (1+¢€) of optimal can be done
in time polynomial in 1/€ and n.
— These are not practical
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Solving TSP Approximately,
Practically
 Local Search
— Lin-Kernighan method
Simulated Annealing
Genetic Algorithms
Neural Networks
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Local Search Algorithms

« Start with an initial solution that is
usually easy to find, but is not
necessarily good.

» Repeatedly modify the current solution

to a better nearby one. Until no nearby
one is better.
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2-Opt Neighborhood

u u
g % 2-opt(x,y,u,v) g /.\O\.
y y
e e
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2-opt Algorithm

Lin-Kernighan (1973)

Find an initial tour T
1. For every pair of distinct edges (x,y), (u,v) in T
if C(x,u) + C(y,v) < C(x,y) + C(u,v) then
T =T —{(xy),(u.v)} union {(x,u),(y,v)}
exit for loop and go to 1
Return T
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Example of LK

Euclidian case

V
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Example of LK

Euclidian case

V
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Example of LK

¢

Euclidian case
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Example of LK

Euclidian case
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Example of LK

¢

e

Euclidian case
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Example of LK

Euclidian case

\./
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Example of LK

Euclidian case
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Lin-Kernighan

e Empirical O(n??) time

 Finds optimal in most examples < 100
points

» Excellent Implementations

— Can easily handle hundreds of thousands
of points
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Local Minimum Problem

e Local search can lead to a local minimum in
the solution space, not necessarily a global
minimum.

Solution Surface
W
Local minimum \
Global minimum
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NP-Completeness Theory

« Explains why some problems are hard and
probably not solvable in polynomial time.

¢ Invented by Cook in 1971.

« Popularized in an important paper by Karp in
1972.

¢ Standardized by Garey and Johnson in 1979
in “Computers and Intractability: A Guide to
the Theory of NP-Completeness”.
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P

» Complexity theory is the study of the time and
storage needed to solve problems.
— Sorting requires O(n log n) time
— Minimum spanning tree can be solved in O(m log
m) time
— Connected components can be solved in O(m)
time.
» P is the class of problems that can be solved
in polynomial time.
— 0O(n), O(n?), O(nd), ... time
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Order Notation

e f(n) = O(g(n)) means f(n) < c g(n) for some c.
- 1,000,000 n2 + 2n = O(n2)
—nlog n=0(n3)

e f(n) = Q(g(n)) means f(n) > ¢ g(n) for some ¢
> 0.

—.0000001 n2 +2n = Q(n?)
— 1,000 n2 = Q(n)

e f(n) = ©(g(n)) means f(n) = O(g(n)) and f(n) =
Q(g(n))

— ank+a,nkt+ .. =0(nk) ifa,>0
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Graph of Order of Magnitude

Graph of Order of Magnitude

) Q(n?)
/

Lecture 2 - Traveling Salesman, 38
NP-Completeness

n2
0O(n?)
n
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Graph of Order of Magnitude
o(n?)
n2
n
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Worst Case Asymptotic Analysis

« Given problem find the best t(n) such that
there is an algorithm solving the problem that
runs in time O(t(n)) on all inputs of size n.

— t(n) is an asymptotic upper bound

¢ Given a problem find the best t'(n) such that
every algorithm solving the problem runs in
time Q(t'(n)) on some input of length n.

— t'(n) is an asymptotic lower bound
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Bane of Worst Case Asymptotic
Analysis

* Worst case
— A bad asymptotic algorithm in the worst case
might do well on the common case.
e Asymptotic
— A good asymptotic algorithm might perform poorly
on inputs of reasonable size.

I
crossover is large
Lecture 2 - Traveling Salesman, a1
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NP

« NP stands for nondeterministic polynomial time.

* We consider the class of decision problems
(yes/no problems).

« A nondeterministic algorithm is one that can

make “guesses”.

A decision problem is in NP if it can be solved

by a nondeterministic algorithm that runs in

polynomial time.

Some problems in NP seem very hard to solve.
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Examples of Decision Problems in NP

e Decision TSP

— Input: Graph G = (V,E) with costs on the edges
and a budget B

— Output: Determine if there is a tour visiting each
vertex exactly once of total cost < B.

— Algorithm: Guess a tour and check its cost is
under budget.

« Graph Coloring

— input: Graph G = (V,E) and a number k.

— output: Determine if all vertices can be colored
with k colors such that no two adjacent vertices
have the same color.

— Algorithm: Guess a coloring and then check it.
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CNF-SAT

« Input: A Boolean formula F in conjunctive
normal form.

(XCyL2)C(=-xCyLz)C(=-xCayLn2)
< Output: Determine if F is satisfiable, that is,
there is some assignment to the variables
that makes the formula F true.
x=1y=0,2z=1
(ACoC1C(-1COoCYLC(-1C-0CHY)
¢ Algorithm: Guess an assignment and check it.
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Subset Sum

e Input: Integers ,a;,...a,,b

e Output: Determine if there is subset
X 0{12,...,n}

with the property ;a,- =b

« Algorithm: Guess the subset X and
check the sum adds up to b.
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Decision Problems
Reporting Problems
Optimization Problems

e Example 1: Subset sum

— Decision Problem: Determine if a subset
sum exists.

— Reporting Problem: If a subset sum exists,
then report one.

— Optimization Problem: Find a subset whose

sum is as close as possible to b, without
going over b.
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Decision Problems

Reporting Problems
Optimization Problems

e Example 2. Traveling Salesman

— Optimization problem — Find a tour that
minimizes cost.
— Decision problem — Determine if a tour

exists that comes under a specified
budget.

— Reporting problem - If a tour exist that
comes under a specified budget, find it.

Lecture 2 - Traveling Salesman, a7
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Polynomial Time Equivalence of
Decision, Reporting, Optimization
« If any one of Decision, Reporting, or

Optimization can be solved in

polynomial time then so can the others.

 Decision is easily reducible to

Optimization
— Subset sum
— Traveling salesman
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Reporting Reduces to Decision

e Subset sum:

— Let subset-sum(A,b) return true if some subset of
A adds up to b. Otherwise it returns false.

Precondition: subset-sum ({a,,...,a,},b) is true
Report ({a,...,a,},b)
X :=the empty set;
fori=1tondo
if subset-sum({a,,,,...,a,},b - &) then
add ito X;
b:=b-a;
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Example
3,5,2,7,4,2,b=11

52,7,4,2,b=11-3-->yes, X={3},b=8
2,7,4,2,b=8-5-->n0
7,4,2,b=8-2-->yes, X={3,2},b=6
4,2,b=6-7-->no0

2,b=6-4-->yes, X={3,2,4},b=2

b=2-2-->yes, X={3,2,4,2}
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Optimization Reduces to Decision

e Traveling Salesman
— TS(G,B) which returns true if and only if G has a
tour of length < B. Assume costs are positive
integers.
. Find the minimum cost of a tour by binary search
2. Find the tour itself (reporting).
Find minimum cost of a tour
L:=0;
U := sum of all costs of edges;
while L +1<Udo
B = (L+U)/2;
if TB(G,B) then U ;=B else L := B;
return U

[N
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The Relationship

Decision

Reporting

/

Optimization
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Exercise

1. Assume the decision algorithm subset-
sum(A,b) is provided. Solve the
optimization problem for subset sum.

2. Assume the decision problem TS(G,B)
is given. Solve the reporting problem
for traveling salesman.
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Polynomial Time Reducibility

¢ Informal idea: A decision problem A is
polynomial time reducible to a decision
problem B if a polynomial time algorithm for B
can be used to construct a polynomial time
algorithm for A.

« Formally: A is polynomial time reducible to B if
there is a function f computable in polynomial
time such that for all x:

— xhas Aif and only if f(x) has B

« If A polynomial time reducible to B and B

solvable in polynomial time then so is A.
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Block Diagram to Decide A from

Algorithm to decide A
X Algorithm f(x) | Algorithm | f(x) has B?| x has A?
to compute f to decide B
Lecture 2 - Traveling Salesman, 55
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Transitivity of Polynomial Time
Reduction
« Define: A<, Bto mean that Ais polynomial
time reducible to B.
« Transitivity: A<, B and B<, C implies A<, C
« Example:

— Every problem in NP is known to be polynomial
time reducible to CNF-SAT.

— SAT is polynomial time reducible to Decision TSP

— Therefore, every problem in NP is polynomial time
reducible to Decision TSP.
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NP-Completeness Definition

« Definition: A decision problem A is NP-
complete if
—Aisin NP
— Every problem in NP is reducible to A in
polynomial time.

» NP-complete problems seem to require
exponential time, but there is no proof to
date.
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Cook’s Theorem

* CNF-satisfiability is NP-complete
— Cook 1971, Levin 1973

Proof formalizes the notion of a nondeterministic algorithm
as a nondeterministic Turing machine. It can be shown
that a CNF-formula F can be produced in polynomial time
that describes the operation of the nondeterministic
Turning machine. The Turing machine halts in a “yes”
state if and only if the formula F is satisfiable.
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NP-Hardness

« Definition: A problem A is NP-hard if an
NP-complete problem can be solved
using A as an “oracle”.

— Decision TSP is NP-complete
— TSP is NP-hard

* Oracle is like a constant time function
call.
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P vs NP

» Every problem in P is also in NP

P UONP

» Famous UnsolvedOpen Question:
P=NP?
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Probable Picture

NP-Complete,

¢

Lecture 2 - Traveling Salesman, 61
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Clique Decision Problem

e Input: Undirected Graph G = (V,E) and
a number k.

Output: Determine if G has a k-clique,
that is, there is a set of vertices U of
size k such that for each pair of vertices
in U there is and edge in E between
them.
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Cliqgue Example

4-clique

Lecture 2 - Traveling Salesman, 63
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Clique is NP-Complete

¢ Cliqueis in NP
— Nondeterministic algorithm: guess k vertices then

check that there is an edge between each pair of
them.

¢ Clique is NP-hard
— We reduce CNF-satisfiability to Clique in polynomial
time
— Given a CNF formula F we need to construct a
graph G and a number k with the property that F is
satisfiable if and only if G has a k-clique. The
contstruction must be efficient, polynomial time.

Lecture 2 - Traveling Salesman, 64
NP-Completeness

Construction by Example
F=(XCyC2)C(=xLyLz)C(=-xCayL=2)
/\1

literal clause

Lecture 2 - Traveling Salesman, 65
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Construction by Example

F=(xCyL2)C(-xCyLz)C(=-xCaylLn2)
x=1,y=0,z=1

Lecture 2 - Traveling Salesman, 66
NP-Completeness

11



General Construction
k. m
F :ﬂUaﬁ where &; D{Xl’ﬂxll"'lvﬁiﬁxn}

i=1 j=1

G=(V,E) where literals

V={g;1<i<k,1<j<m}
E={{g,a,}:i#i'and,
a; and a.;. are not complementary}

k isthe number of clauses

Lecture 2 - Traveling Salesman, 67
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The Reduction Argument

» We must show
— F satisfiable implies G has a clique of size

« Given a satisfying assignment for F, for each
clause pick a literal that is satisfied. Those
literals in the graph G form a k-clique.

— G has a clique of size kimplies F is
satisfiable.

« Given a k-clique in G, assign each literal in the
clique to be 1. This yields a satisfying
assignment to F.
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Clique to Assignment
F=(XxCyC2)C(=xLCyLz)C(=-xCayL=2)

y=0,z=1

Lecture 2 - Traveling Salesman, 69
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Assignment to Clique
F=(XCy)C(-xCy)C(=-xCay)C(xCy)

G has no 4-clique
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3-CNF-Satifiability

* Input: A Boolean formula F with at most
3 literals per clause.

e Output: Determine if F is satisfiable.

« 3-CNF-Satisfiability is NP-complete
— This is probably the most used NP-
complete problem in reduction proofs
showing other decision problems are NP-
hard.

Lecture 2 - Traveling Salesman, 7
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Reduction by Example
Given F =(x 0O-x, 0%, 0-x,) OF'
Construct H =(x, 0z)0(=x,0-202z)
0(x, 0=z, 02,) O(~x, 0-~2,) OF'

F is satisfiable if and only if H is satisfiable.

X, = 0 satisfies the first clause of F.

7, =1,2,=0, z, =0 satisfy clauses 1,3, and 4 of H and

X, =0 satisfies the clause 2 of H.

Lecture 2 - Traveling Salesman, 72
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3-Colorability 3-CNF-Sat <, 3-Color

Input: Graph G =(V.E). + Given a 3-CNF formula F we have to
» Output: Determine if all vertices can be . .
colored with 3 colors such that no two S_hOW how to construct in polynomial
adjacent vertices have the same color. time a graph G such that:
— F is satisfiable implies G is 3-colorable

— G is 3-colorable implies F is satisfiable

3-colorable Not 3-colorable
Lecture 2 - Traveling Salesman, 73 Lecture 2 - Traveling Salesman, 74
NP-Completeness NP-Completeness
The Gadget Properties of the Gadget
« This is a classic reduction that uses a “gadget”. * Three colorable if and only if outer
« Assume the outer vertices are colored at most two vertices not all the same color.

colors. The gadget is 3-colorable if and only if the
outer vertices are not all the same color.

Not 3 colorable Is 3 colorable
Lecture 2 - Traveling Salesman, 75 Lecture 2 - Traveling Salesman, 76
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Reduction by Example Satisfaction Example  x=1
F=(XCyLCz)C(-xCyLz)C(=xCayLC=2) F=(XCyCz)C(-xCyLC2)C(=-xCayLC-2) y=1
z=0

Lecture 2 - Traveling Salesman, 77 Lecture 2 - Traveling Salesman, 78
NP-Completeness NP-Completeness




Satisfaction Example
F=(XCyC2z)C(=-xCyLz)C(=-xCayL-2)

Lecture 2 - Traveling Salesman,
NP-Completeness

Non-Satisfaction Example x=o
F=(XCyL2)L(~-xLyLz)C(~xCayL-2) y=0

Lecture 2 - Traveling Salesman, 80
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Naming the Gadget

Lecture 2 - Traveling Salesman,
NP-Completeness

81

General Construction

k
F=((a;0a,0a;) where a; 0{x,=1X,...,X,, 7%}

i=1
G=(V,E) where

V ={r,g,b} O{x,~x,..., Xo %} 0{O,U;, T, 1N, R :1<i < Kk}
E={{r.g} {g,0} {b,r}}

O{{, 7} {0~ % 1}

O{{%, b} {5, B} .. {%,. b} {~%,.b}}

O{{0, 1} {Ui, NFATL RE{TL NN, RYAR, 1} 1 1<i <k}
Of{a,,0} {a,, U} {a,T}:1<i<k}

0{{0., g} {U;, g} {Ti. g} :1<i <k}

Lecture 2 - Traveling Salesman, 82
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Reductions

‘Clique‘

‘ 3-Partition ‘

Bin Packing

[3-CNF-Sat]

Lecture 2 - Traveling Salesman,
NP-Completeness
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Exact Cover

e Input: Aset U={u,u,,..,u} and subsets

s.S,.....S, 0OU
« Output: Determine if there is set of pairwise
disjoint sets that union to U, that is, a set X
such that:
X 0{1,2,...,n}
i,jOXandi#jimpliesSnS =¢
Us=u
iox

Lecture 2 - Traveling Salesman, 84
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Example of Exact Cover
U ={a,b,c,d,e f,g,h,i}

{a,c,e {a f,g}.{b,d}{b, f,h} {eh,i}{f, hi}.{d, g,i}

Exact Cover

{ac.¢g.{b f,h.{d,g,i}

Lecture 2 - Traveling Salesman, 85
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3-Partition

« Input: A set of numbers A={a,a,,...,a,,} and
number B with the properties that B/4 < a; < B/2

and iﬂza —B.
=1

e Output: Determine if A can be partitioned into S;,
S,,..., Sy such that for all i

> a =B.
ios
Note: each § must contain exactly 3 elements.

Lecture 2 - Traveling Salesman, 86
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Example of 3-Partition

* A={26, 29, 33, 33, 33, 34, 35, 36, 41}
*« B=100,m=3
» 3-Partition

- 26, 33, 41

-29, 36, 35

-33,33,34

Lecture 2 - Traveling Salesman, 87
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Bin Packing

* Input: A set of numbers A={a,a,,...,a,}
and numbers B (capacity) and K (number
of bins).

» QOutput: Determine if A can be partitioned
into S, S,,..., ¢ such that for all i

> a <B.

ios

Lecture 2 - Traveling Salesman, 88
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Bin Packing Example

«A={2,2,3,3,3,4,4,4,5,5,5}
«B=10,K=4

 Bin Packing
-3,3,4
-2,3,5 Perfect fit!
-5,5
-2,4,4
Lecture 2 - Traveling Salesman, 89

NP-Completeness

Exercise — Argue NP-Completeness

1. Independent Set

— Input: Undirected graph G = (V,E) and a number
k.

— Output: Determine if there is an independent set
of size k. X, contained in V, is independent if for
alli,j in X there is no edge in G fromito j.

2. Equal Subset-Sum
— Input: {a;, a,, ... , a,} positive integers
— Output: Determine if there is a set | such that
=28
idl jal

Lecture 2 - Traveling Salesman, 90
NP-Completeness
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Coping with NP-completeness

* You have encountered a Hard Problem
¢ Maybe it is NP-hard
— Books
« Garey and Johnson
— Websites

— Research papers

— Maybe you'll have to do your own reduction
Can’t determine NP-hardness, then it is
probably hard in some way.

Modify the problem to be more tractable

Lecture 2 - Traveling Salesman, o1
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Boundary Between P and NP

« Satisfiability
—2-CNF-SATisin P
— 3-CNF-SAT is NP-complete
 Coloring
—2-COLORisinP
— 3-COLOR is NP-complete
 Planar Colorability
— Planar graphs are always 4-colorable
— 3-PLANAR-COLOR is NP-complete

Lecture 2 - Traveling Salesman, 92
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Boundary Continued

* Independent Set
— Maximum independent set is NP-hard
— Maximal independent set is in P

e Cutting a graph
— Maximum cut in a graph is NP-hard

— Minimum cut in a graph is in P (equivalent to Max
Flow)

e Spanning Tree
— Minimum spanning tree is in P
— Degree constrained spanning tree is NP-hard
— Bounded diameter spanning tree is NP-hard

Lecture 2 - Traveling Salesman, 93
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Load Balanced Spanning Tree

* Input: An undirected graph G = (V,E).
» Output: A number k and a spanning tree

(V,T) of degree k. Furthermore, there is
no spanning tree of degree < k.

Lecture 2 - Traveling Salesman, 94
NP-Completeness

Spanning Tree of Degree 3

Lecture 2 - Traveling Salesman, 95
NP-Completeness

Spanning Tree of Degree 2

Lecture 2 - Traveling Salesman, 96
NP-Completeness
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LBST Decision Problem

e Input: An undirected graph G = (V,E)
and number k.

e Output: Determine if G has a spanning
tree of degree k.

Lecture 2 - Traveling Salesman, o7
NP-Completeness

Hamiltonian Path Decision
Problem
e Input: Undirected Graph G =(V,E).
» Output: Determine if there is a path in G
that visits each node exactly once.

» Hamiltonian Path is known to be NP-
complete

Lecture 2 - Traveling Salesman, 98
NP-Completeness

Hamiltonian Path is Polynomial
time Reducible to Spanning Tree
of Degree 2

« If there an algorithm to quickly determine

if a graph has a spanning tree of degree

2 then there is an algorithm to quickly

solve the Hamiltonian path problem.

— A spanning tree of degree 2 is a Hamiltonian
path!

— These problems are essentially the same
problem.

Lecture 2 - Traveling Salesman, 99
NP-Completeness

Lessons When Coping

» Lesson 1. Any problem that is in NP
may be NP-complete.

» Lesson 2. Any problem in NP may be in
P.

* Lesson 3. You may not be able to
determine either
— factoring is open
— graph isomorphism is open

Lecture 2 - Traveling Salesman, 100
NP-Completeness
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