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Reading

• Chapter 29
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Outline for Tonight

• Examples of Linear Programming
• Reductions to Linear Programming
• Duality Theorem
• Approximation algorithms using LP
• Simplex Algorithm
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Linear Programming

• The process of minimizing a linear objective function 
subject to a finite number of linear equality and 
inequality constraints.

• The word “programming” is historical and predates 
computer programming.

• Example applications:
– airline crew scheduling
– manufacturing and production planning
– telecommunications network design

• “Few problems studied in computer science have 
greater application in the real world.”
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An Example: The Diet Problem

• A student is trying to decide on lowest cost diet that 
provides sufficient amount of protein, with two choices:
– steak: 2 units of protein/pound, $3/pound
– peanut butter: 1 unit of protein/pound, $2/pound

• In proper diet, need 4 units protein/day.
Let x = # pounds peanut butter/day in the diet.

Let y = # pounds steak/day in the diet.

Goal: minimize  2x + 3y (total cost)
subject to constraints:

x + 2y ≥ 4
x ≥ 0,  y ≥ 0

This is an LP- formulation 
of our problem
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An Example: The Diet Problem

• This is an optimization problem.
• Any solution meeting the nutritional demands is called 

a feasible solution
• A feasible solution of minimum cost is called the 

optimal solution.

Goal: minimize  2x + 3y (total cost)
subject to constraints:

x + 2y ≥ 4
x ≥ 0,  y ≥ 0
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Linear Program - Definition

A linear program is a problem with n variables 
x1,…,xn, that has:

1. A linear objective function, which must be
minimized/maximized. Looks like:

max (min) c1x1+c2x2+… +cnxn

2. A set of m linear constraints. A constraint  
looks like: 

ai1x1 + ai2x2 + … + ainxn ≤ bi (or ≥ or =)

Note: the values of the coefficients ci, ai,j are 
given in the problem input.
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Feasible Set
• Each linear inequality divides n-dimensional 

space into two halfspaces, one where the 
inequality is satisfied, and one where it’s not.

• Feasible Set : solutions to a family of linear 
inequalities.

• The linear cost functions, defines a family of 
parallel hyperplanes (lines in 2D, planes in 
3D, etc.). Want to find one of minimum cost 
à must occur at corner of feasible set.
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Visually…
x= peanut butter, y = steak

x+2y=4

y=0

x=0

feasible set
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Optimal vector occurs at some 
corner of the feasible set!

x+2y=4

y=0

x=0

feasible set

2x+3y=6

2x+3y=0

Opt: 
x=0,
y=2

Minimal price of 
one protein unit 
= 6/4=1.5
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Optimal vector occurs at some 
corner of the feasible set!

y=0

x=0

feasible set

An Example 
with 6 

constraints.
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Standard Form of a Linear Program.

Maximize c1x1 + c2x2 +…+ cnxn

subject to Σ 1 ≤ j ≤ n aijxj ≤ bi i=1..m
xj ≥ 0 j=1..n

0 xand b  Ax to subject

cx Maximize

≥≤
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Putting LPs Into Standard Form

• Min to Max
– Change Σcjxj to Σ(-cj)xj

• Change = constraints to < and > constraints

• Add non-negativity constraints by substituting
x’i - x’’i for xi and adding constraints x’i > 0, x’’i > 0.

• Change > constraints to < constraints by 
using negation
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The Feasible Set of Standard LP
• Intersection of a set of half-spaces, called a 

polyhedron.

• If it’s bounded and nonempty, it’s a polytope.

There are 3 cases:
• feasible set is empty.

• cost function is unbounded on feasible set.
• cost has a maximum on feasible set.

First two cases very uncommon for real problems 
in economics and engineering.
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Solving LP

• There are several polynomial-time algorithms 
that solve any linear program optimally.
Ø The Simplex method (later) (not polynomial time)
Ø The Ellipsoid method (polynomial time)
Ø More

• These algorithms can be implemented in various 
ways.

• There are many existing software packages for 
LP.

• It is convenient to use LP as a “black box” for 
solving various optimization problems.
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LP formulation: another example

Bob’s bakery sells bagel and muffins.

To bake a dozen bagels Bob needs 5 cups of flour, 2
eggs, and one cup of sugar.

To bake a dozen muffins Bob needs 4 cups of flour, 4
eggs and two cups of sugar.

Bob can sell bagels in $10/dozen and muffins in 
$12/dozen.

Bob has 50 cups of flour, 30 eggs and 20 cups of sugar.
How many bagels and muffins should Bob bake in order 

to maximize his revenue?
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LP formulation: Bob’s bakery

Maximize b⋅x
s.t. Ax ≤ c

x ≥ 0.

Bagels  Muffins

Flour 5           4 
Eggs 2 4
Sugar 1           2

5   4

A =      2  4

1   2

Revenue 10  12

Avail.

50
30
20

50
30
20

c =b =  10  12

Maximize 10x1+12x2

s.t. 5x1+4x2 ≤ 50
2x1+4x2 ≤ 30
x1+2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0
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In class exercise: Formulate as LP
You want to invest $1000 in 3 stocks,  at most $400

per stock
price/share        dividends/year

stock A $50                       $2
stock B $200                     $5
stock C $20                         0

Stock C has probability ½ of appreciating to $25 in 
a year, and prob ½ of staying $20.

What amount of each stock should be bought to 
maximize dividends + expected appreciation over 
a year?
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In class exercise: Formulate as LP

Solution: Let xa, xb, and xc denote the amounts of A,B,C 
stocks to be bought.

Objective function:

Constraints:
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Reduction Example: Max Flow

Max Flow is reducible to LP

Variables: f(e) - the flow on edge e.

Max Σe∈out(s) f(e) (assume s has zero in-degree)
Subject to

f(e) ≤ c(e),  ∀e∈E

Σe ∈ in(v) f(e) - Σe ∈ out(v) f(e) = 0  , ∀v∈V-{s,t}

f(e) ≥ 0,  ∀e∈E

(Edge condition)

(Vertex condition)
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Example - L1 Best Fit

• If m > n then overconstrained.
• Find x1,…,xn to minimize

mj1bxa ji

n

1i
ij ≤≤=�

=

��
= =

−
m

1j
ji

n

1i
ij bxa L1 norm

Example:
2x + 3y = 6
3x - 5y = 2
4x + 5y = 7
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L1 Best Fit Reduced to LP

mj 1 for                  

0e                               

ebxa                 

exab  to subject

e  minimize

j

jji

n

1i
ij

ji

n

1i
ijj

m

1j
j

≤≤

≥

≤−

≤−

�

�

�

=

=

=

Lecture 4 - Linear Programming 23

A Central Result of LP Theory:
Duality Theorem

• Every linear program has a dual
• If the original is a maximization, the dual is a 

minimization and vice versa
• Solution of one leads to solution of other
Primal: Maximize  xc subject to Ax ≤ b,  x ≥ 0
Dual: Minimize  yb subject to yAT ≥ c,  y ≥ 0

If one has optimal solution so does other, and their 
values are the same.
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Primal: Maximize  xc  subject to Ax ≤ b,  x ≥ 0

Dual: Minimize  yb  subject to yAT ≥ c,  y ≥ 0

• In the primal, c is cost function and b was in 
the constraint. In the dual, reversed.

• Inequality sign is changed and maximization
turns to minimization.

Dual:
minimize 4p +q + 2r    
s.t p+2q + r > 2, 

2p+5q -3r > 3,  

p,q,r ≥ 0

Primal:
maximize 2x + 3y

s.t x+2y < 4,  
2x + 5y < 1, 
x - 3y < 2,  
x ≥ 0, y ≥ 0
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Weak Duality Theorem

• Theorem: If x is a feasible solution to 
the primal problem and y is a feasible 
solution to the dual problem then
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Proof of Weak Duality
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Duality Theorem

• If x* is optimal for the primal and y* is 
optimal for the dual, then

*
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Simple Example of Duality

• Diet problem:  minimize 2x + 3y

subject to x+2y ≥ 4,  

x ≥ 0, y ≥ 0
• Dual problem: maximize 4p

subject to   p ≤ 2, 
2p ≤ 3, 

p ≥ 0
• Dual: the problem faced by a druggist who sells 

synthetic protein, trying to compete with peanut 
butter and steak
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Simple Example

• The druggist wants to maximize the price p, 
subject to constraints:
– synthetic protein must not cost more than protein 

available in foods.
– price must be non-negative or he won’t sell any
– revenue to druggist will be 4p

• Solution:  p ≤ 3/2  à objective value = 4p = 6
• Not coincidence that it’s equal the minimal cost in 

original problem.  
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What’s going on?

• Notice: feasible sets completely different for primal 
and dual, but nonetheless an important relation 
between them.

• Duality theorem says that in the competition between 
the grocer and the druggist the result is always a tie.

• Optimal solution to primal tells purchaser what to do.
• Optimal solution to dual fixes the natural prices at 

which economy should run.
• The diet x and vitamin prices y are optimal when

– grocer sells zero of any food that is priced above its vitamin 
equivalent.

– druggist charges 0 for any vitamin that is oversupplied in the 
diet.
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Duality Theorem

Druggist’s max revenue = Purchasers min cost

Practical Use of Duality:
• Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than on 
the primal.

• Can be used to bound how far you are from 
optimal solution.

• Important implications for economists.
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Linear Programming, Mid-Summary

• Of great practical importance to solve linear 
programs:
– they model important practical problems

• production, approximating the solution of 
inconsistent equations, manufacturing, network 
design, flow control, resource allocation.

– solving an LP is often an important component of 
solving or approximating the solution to an 
integer linear programming problem.

• Can be solved in poly-time, the simplex 
algorithm works very well in practice. 

• One problem where you really do not want to 
write your own code.
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LP-based approximations

• We don’t know any polynomial-time algorithm 
for any NP-complete problem

• We know how to solve LP in polynomial time
• We will see that LP can be used to get 

approximate solutions to some NP-complete 
problems.
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Weighted Vertex Cover

Input: Graph G=(V,E) with non-negative 
weights w(v) on the vertices.

Goal: Find a minimum-cost set of vertices 
S, such that all the edges are covered. 
An edge is covered iff at least one of its 
endpoints is in S.

Recall: Vertex Cover is NP-complete. 
The best known approximation factor is     
2- (log log |V|/2 log|V|).
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Weighted Vertex Cover

Variables: for each v∈V, x(v) – is v in the cover?

Min Σv∈V w(v)x(v)
s.t.

x(v) + x(u) ≥ 1,  ∀(u,v)∈E

x(v) ∈ {0,1}   ∀v∈V
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The LP Relaxation

This is not a linear program: the constraints of type
x(v) ∈ {0,1} are not linear.

Such problems (LP's with integrality constraints on 
variables) are called integer linear programs (IP).
Solving IP's is an NP-hard problem.

However, if we replace the constraints x(v) ∈ {0,1}
by x(v)≥ 0 and x(v) ≤ 1, we will get a linear program.

The resulting LP is called a Linear Relaxation of
IP, since we relax the integrality constraints.
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LP Relaxation of Weighted Vertex 
Cover

Min Σv∈V w(v)x(v)
s.t.

x(v) + x(u) ≥ 1,  ∀(u,v)∈E

x(v)≥ 0,  ∀v∈V

x(v) ≤ 1,  ∀v∈V
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LP Relaxation of Weighted Vertex 
Cover - example

Consider the case in which all 
weights are 1.

An optimal VC has cost 2 (any two 
vertices)

An optimal relaxation has cost 3/2 (for 
all three vertices x(v)=1/2) 

½

½

½
The LP and the IP are different 
problems. Can we still learn 
something about Integer VC?
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Why LP Relaxation Is Useful ? 

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPT(LP) is always better 
than OPT(IP) (why?)

Therefore, if we find an integral solution within a 
factor r of OPTLP, it is also an r-approximation of 
the original problem.

These can be done by “wise” rounding.
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Approximation of
Vertex Cover Using LP-Rounding

1. Solve the LP-Relaxation.

2. Let S be the set of all the vertices v with x(v) ≥ 1/2. 
Output S as the solution.

Analysis: The solution is feasible: for each edge e=(u,v),
either x(v) ≥1/2 or x(u) ≥1/2

The value of the solution is: Σv∈s w(v) = Σ{v|x(v) ≥1/2} w(v) ≤
2Σv∈V w(v)x(v) =2OPTLP

Since OPTLP ≤ OPTVC, the cost of the solution is ≤
2OPTVC.
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The Simplex Method

• Start with LP into standard form.
• Phase I : Assume x = 0 is a feasible solution, that is, 

0 is in the feasible region.  If not, then an auxiliary 
simplex method is used to start find a feasible 
solution (more later). 

• Phase II: Use the “slack” version of the LP to move
from corner to corner along the edges of the feasible 
region.  Technically, we’ll see how to move from one 
slack version of the LP to another to achieve this.

• When reach a local maximum you’ve found the 
optimum.
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Phase II

y=0

x=0

Feasible
region

Objective 
function

Constraint 

Current
feasible
maximum
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Phase II

y=0

x=0

Feasible
region

Objective 
function

Constraint 

Current
feasible
maximum
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Phase II

y=0

x=0

Feasible
region

Objective 
function

Constraint 

Current
feasible
maximum
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Phase II

y=0

x=0

Feasible
region

Objective 
function

Constraint 

Current
feasible
maximum
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Simplex Algorithm: An Example in 3D

Maximize 5x + 4y + 3z   
subject to 2x+ 3y + z ≤ 5

4x + y + 2z ≤ 11
3x + 4y + 2z ≤ 8
x,y,z ≥ 0.

Convert inequalities into equalities by introducing slack
variables a,b,c.

Define: a = 5-2x-3y-z         à a ≥ 0
b = 11-4x-y-2z       à b ≥ 0  
c =  8-3x-4y-2z      à c ≥ 0
F = 5x+4y+3z,   objective function
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Initial State of Simplex

x=y=z = 0, a = 5, b = 11, c = 8, F = 0

a = 5-2x-3y-z 
b = 11-4x-y-2z
c =  8-3x-4y-2z 

F = 5x+4y+3z

Nonbasic Basic Objective 
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Choose a Pivot and Tighten

x=y=z = 0, a = 5, b = 11, c = 8, F = 0

a = 5-2x-3y-z         x < 5/2  most stringent!
b = 11-4x-y-2z       x < 11/4
c =  8-3x-4y-2z      x < 8/3

F = 5x+4y+3z

Nonbasic Basic Objective 

Pivot is x
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Remove Pivot From RHS

a=y=z = 0, x = 5/2, b = 1, c = 1/2, F = 25/2

a = 5-2x-3y-z Ł x = 5/2  -3/2 y -1/2 z - 1/2 a 
b = 11-4x-y-2z     Ł b = 1    +    5y               +2a  
c =  8-3x-4y-2z    Ł c = 1/2 +1/2 y -1/2 z + 3/2 a

F = 5x+4y+3z Ł F= 25/2-7/2 y +1/2 z -5/2 a

Nonbasic Basic Objective 
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Choose a Pivot and Tighten

a=y=z = 0, x = 5/2, b = 1, c = 1/2, F = 25/2

x = 5/2  -3/2 y -1/2 z - 1/2 a        z < 5
b = 1    +    5y               +2a        z < ∞
c = 1/2 +1/2 y -1/2 z + 3/2 a       z < 1  most stringent!

F= 25/2-7/2 y +1/2 z -5/2 a
Pivot is z

Nonbasic Basic Objective 
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Remove Pivot from RHS

a=y=c = 0, x = 2, b = 1, z = 1, F = 13

x = 5/2  -3/2 y -1/2 z - 1/2 a   Ł x = 2 - 2y - 2a + c
b = 1    +    5y               +2a   Ł b = 1 + 5y +2a 
c = 1/2 +1/2 y -1/2 z + 3/2 a Ł z = 1 + y + 3a - 2c

F= 25/2-7/2 y +1/2 z -5/2 a   Ł F = 13 - 3y - a - c

Nonbasic Basic Objective 

No way to increase F so we’re done
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Final Solution

Original Problem
Maximize 5x + 4y + 3z   
subject to 2x+ 3y + z ≤ 5     tight

4x + y + 2z ≤ 11   not tight
3x + 4y + 2z ≤ 8   tight
x,y,z ≥ 0.

Solution: x = 2, y = 0, z = 1, F = 13
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Finding a Feasible Solution

• Suppose that 0 is not feasible, then Phase 1 finds a 
feasible solution in terms of the basic variables.

Maximize c1x1 + c2x2 +…+ cnxn

subject to Σ 1 ≤ j ≤ n aijxj ≤ bj i=1..m
xj ≥ 0 j=1..n

Maximize   -x0

subject to Σ 1 ≤ j ≤ n aijxj - x0 ≤ bj i=1..m
xj ≥ 0 j=0..n

Ignore the objective function

Feasible solution exist only if maximum has x0 = 0
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Example

Maximize 2x  - y   

subject to 2x - y ≤ 2

x - 5y ≤ -4

x,y ≥ 0.

x = y = 0 is not a feasible solution
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Auxiliary LP

Maximize -z   

subject to 2x - y  - z ≤ 2

x - 5y  - z ≤ -4

x,y,z ≥ 0.
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Move to Slack Form
Assuming x=y=0, we need to make sure 
a,b > 0

a = 2 - 2x +  y  + z    z > -2

b = -4 - x + 5y  + z    z > 4   most stringent!

F = -z

We do a pivot step with z.
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Remove Pivot from RHS

x=y=b=0, a = 6, z = 4, F = -4

a = 2 - 2x +  y  + z  Ł a = 6 - x - 4y + b

b = -4 - x + 5y  + z Ł z = 4 + x - 5y + b

F = -z                      Ł F = -4 - x + 5y - b

Nonbasic Basic Objective 
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Choose a Pivot and Tighten

x=y=b=0, a = 6, z = 4, F = -4

a = 6 - x - 4y + b    y < 6/4

z = 4 + x - 5y + b    y < 4/5 most stringent!

F = -4 - x + 5y - b

Nonbasic Basic Objective 

Pivot is y
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Remove Pivot from RHS

x=z=b=0, a = 14/5, y = 4/5, F = 0

a = 6 - x - 4y + b    Ł a = 14/5 - 9/5 x - 4/5 z - 1/5 b

z = 4 + x - 5y + b Ł y = 4/5 + 1/5 x - 1/5 z + 1/5 b

F = -4 - x + 5y - b   Ł F = 0 - z 

Nonbasic Basic Objective 

Auxiliary LP is solved because there is no way to increase F.
Force z = 0 permanently.
Start Simplex with x = b = 0, a = 14/5, y = 4/5, and 
F equal to the original F with nonbasic variables on right hand side 
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Starting the Simplex

x=b=0, a = 14/5, y = 4/5, F = -4/5

a = 14/5 - 9/5 x - 1/5 b

y = 4/5 + 1/5 x + 1/5 b

F = 2x - y = -4/5 + 9/5 x - 1/5 b

Nonbasic Basic Objective 

Original objective 
function
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Class Exercise

• Complete the solving of this LP

Maximize 2x  - y   

subject to 2x - y ≤ 2

x - 5y ≤ -4

x,y ≥ 0.
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Choosing a Pivot

• Largest increase in F
• Largest positive coefficient
• First positive coefficient
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Termination

• Technically, simplex can loop.
• Only so many choices for basic 

variables. Lack of termination can be 
detected.

• Termination is not usually a problem
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LP Summary

• LP is widely used in practice.
• LP has a very nice theory.
• LP relaxation and rounding used in 

approximation algorithms
• Simplex method is a good method but 

has some pathological exponential 
cases.


