

Outline for the Evening

- Convex Hull
- Line Segment Intersection
- Algorithms about points, lines, planes, polygons, triangles, rectangles and other geometric objects.
- Applications in many fields
- robotics, graphics, CAD/CAM, geographic systems

Convex Hull in 2-dimension

- Given n points on the plane find the smallest enclosing curve.

Convex Hull in 2-dimension

- The convex hull is a polygon whose vertices are some of the points.

Definition of Convex Hull Problem

- Input:

Set of points $p_{1}, p_{2}, \ldots, p_{n}$ in 2 space. (Each point is an ordered pair $p=(x, y)$ of reals.)

- Output:

A sequence of points $p_{i 1}, p_{i 2}, \ldots, p_{i k}$ such that traversing these points in order gives the convex hull.

Example

Input: $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{8}, p_{9}, p_{10}, p_{11}, p_{12}$ Output: $p_{6}, p_{1}, p_{2}, p_{11}, p_{12}, p_{10}$

Slow Convex Hull Algorithm

- For each pair of points p, q determine if the line from p to q is on the convex hull.

Graham's Scan Convex Hull Algorithm

- Sort the points from left to right (sort on the first coordinate in increasing order)

$$
\longrightarrow
$$

Lecture 8 - Computational Geometry

Convex Hull Algorithm

- Left Turn - back up

Convex Hull Algorithm

Convex Hull Algorithm

Convex Hull Algorithm

- Right Turn

Convex Hull Algorithm

- Done!

- Not a left turn
- Middle point is included in the convex hull

Vertical Points

- Sort
- First increasing in x
- Second decreasing in y

Time Complexity of Graham's Scan

- Sorting - O(n $\log \mathrm{n})$
- During the scan each point is "visited" at most twice
- Initial visit
- back up visit (happens at most once)
- Scan - O(n)
- Total time O(n log n)
- This is best possible because sorting is reducible to finding convex hull.

Exercise

- Find an algorithm that, given two sets of points A and B on the plane, determines if there is a line that separates the two sets.

Notes on Convex Hull

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Graham (1972)
- $O(\mathrm{n} h)$ algorithm where h is the size of hull
- Jarvis' March, "Gift wrapping" (1973)
- Output sensitive algorithm
- $O(n \log h)$ algorithm where h is size of hull - Kirkpatrick and Seidel (1986)
- d-dimensional Convex Hull
$-\Omega\left(n^{d / 2}\right)$ in the worst case because the output can be this large.

Polygon Intersection

- Polygons have no self intersections

Use line segment intersection to solve polygon intersection

Polygon Intersection

- What if no line segment intersections?

Polygon Intersection

- Intersect a ray from each polygon with the other
- Inside, if ray has an odd number of intersections, otherwise outside. Jordan curve theorem (1887)

Issues

- With n line segments there may be $O\left(n^{2}\right)$ intersections.

- Goal: Good output sensitive algorithm
$-\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{s})$ would be ideal where s is the number of intersections.

Segment List

- We maintain ordered list of segments

Initialization

- Event Queue
- contains all the beginning points and all the end points of segments ordered by decreasing y value.

Event Queue
$\mathrm{b}_{\mathrm{a}}, \mathrm{b}_{\mathrm{b}}, \mathrm{b}_{\mathrm{c}}, \mathrm{b}_{\mathrm{d}}, \mathrm{e}_{\mathrm{d}}, \mathrm{b}_{\mathrm{e}}, \mathrm{e}_{\mathrm{b}}, \mathrm{e}_{\mathrm{e}}, \mathrm{e}_{\mathrm{a}}, \mathrm{e}_{\mathrm{c}}$

- Segment List
- Empty

Plane Sweep Algorithm

- Sweep a plane vertically from top to bottom maintaining the set of known future events.
- Events
- Beginning of a segment
- End of a segment
- Intersection to two "adjacent" segments

Lecture 8 - Computational Geometry
56

Key Idea in the Algorithm

- Just before an intersection event the two line segments must be adjacent in the segment order.
- When a new adjacency occurs between two lines we must check for a possible new intersection event.

Algorithm

- Remove the next event from the event queue
begin segment event

Data Structures

- Event List
- Priority queue ordered by decreasing y, then by increasing x
- Delete minimum, Insertion
- Segment List
- Balanced binary tree search tree
- Insertion, Deletion
- Reversal can be done by deletions and insertions
- Time per event is $\mathrm{O}(\log \mathrm{n})$

Finding Line Segment Intersections

- Given line segments $\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)$ and $\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right)$ do they intersect, and if so where.
- Where? Solve
$-0=\left(q_{2}-p_{2}\right) x+\left(p_{1}-q_{1}\right) y+p_{2} q_{1}-p_{1} q_{2}$
$-0=\left(s_{2}-r_{2}\right) x+\left(r_{1}-s_{1}\right) y+r_{2} s_{1}-r_{1} s_{2}$
- If?
- $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ on opposite sides of line $\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right)$ and
- $\left(r_{1}, r_{2}\right)$ and $\left(s_{1}, s_{2}\right)$ on opposite sides of line $\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)$

Exercise

- A simple polygon is one that does not intersect itself. A polygon is given as a sequence of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$,

- Design an algorithm for determining if a polygon is simple or not.

Notes on Line Segment Intersection

- Total time for plane sweep algorithm is $O(n \log n+s \log n)$ where s is the number of intersections.
$-\mathrm{n} \log \mathrm{n}$ for the initial sorting
- log n per event
- Plane sweep algorithms were pioneered by Shamos and Hoey (1975).
- Intersection Reporting - Bentley and Ottmann (1979)

Brute Force

- Each Voronoi area is the intersection of half spaces defined by perpendicular bisectors.

Linear Size of Voronoi Diagram

- $\mathrm{F}=\mathrm{E}-\mathrm{V}+2$ (Euler's equation)
- $\mathrm{n}=\mathrm{F}$ (one site per face)
- $2 \mathrm{E} \geq 3 \mathrm{~V}$ because each vertex is of degree at least 3 and each edge has 2 vertices.
- $\mathrm{n} \geq 3 \mathrm{~V} / 2-\mathrm{V}+2=\mathrm{V} / 2+2$
- $2 n-2 \geq V$
- $n>E-(2 n-2)+2$
- $3 n-4 \geq E$

Properties Voronoi Diagram

1. A vertex is the center of a circle through at least three sites

Properties Voronoi Diagram

2. A point on a perpendicular bisector of sites p and q is on an edge if the circle centered at the point through p and q contains no other sites.

Fortune's Sweep

- We maintain a "beach line," a sequence of parabolic segments that is the set of points equidistant from a site and the sweep line.
- Events
- Site event - new site is encountered by the sweep line
- Circle event - new vertex is inserted into the Voronoi diagram

Event Queue

- Contains site events and circle events sorted by y in decreasing order, then by x in increasing order
- Circle events can be both inserted and deleted.

Lecture 8 - Computational Geometry

Voronoi Diagram Notes

- Voronoi diagram
- Dirichlet (1850), Voronoi (1907)
- O($\mathrm{n} \log \mathrm{n}$) algorithm
- Divide and conquer - Shamos and Hoey (1975)
- Plane sweep - Fortune (1987)

Numerics

- Computational geometry algorithms need

More Computational Geometry Problems

- Nearest neighbor search
- Closest pair
- Union of objects
- Silhouette
- In most cases there are predicates $P(x, y)$ that need to be checked.
- Example of predicates are $x<y$ and $x=y$
- Checking such predicates is very time consuming.
- There are techniques like interval arithmetic to avoid these exact computations.

