# CSEP 521 Applied Algorithms Spring 2005

Computational Geometry

# Reading

• Chapter 33

Lecture 8 - Computational Geometry

# Outline for the Evening

- Convex Hull
- Line Segment Intersection
- Voronoi Diagram

Lecture 8 - Computational Geometry

# Geometric Algorithms

- Algorithms about points, lines, planes, polygons, triangles, rectangles and other geometric objects.
- Applications in many fields
  - robotics, graphics, CAD/CAM, geographic systems

Lecture 8 - Computational Geometry

putational Geometry

#### Convex Hull in 2-dimension

• Given n points on the plane find the smallest enclosing curve.



Lecture 8 - Computational Geometry

#### Convex Hull in 2-dimension

• The convex hull is a polygon whose vertices are some of the points.



Lecture 8 - Computational Geometry

#### **Definition of Convex Hull Problem**

- Input: Set of points  $p_1, p_2, \dots, p_n$  in 2 space. (Each point is an ordered pair p = (x,y) of reals.)
- Output: A sequence of points  $p_{i1},\,p_{i2},\,...$  ,  $p_{ik}$  such that traversing these points in order gives the convex hull.

Lecture 8 - Computational Geometry



# Slow Convex Hull Algorithm

• For each pair of points p, q determine if the



# Slow Convex Hull Algorithm

- For each pair of points p, q, form the line that passes through p and q and determine if all the other points are on one side of the line.
  - If so the line from p to q is on the convex hull
  - Otherwise not
- Time Complexity is O(n³)
  - Constant time to test if point is on one side of the line from  $(p_1,p_2)$  to  $(q_1,q_2)$ .

$$0 = (q_2 - p_2)x + (p_1 - q_1)y + p_2q_1 - p_1q_2$$

Lecture 8 - Computational Geometry

# Graham's Scan Convex Hull Algorithm

• Sort the points from left to right (sort on the first coordinate in increasing order)



Lecture 8 - Computational Geometry

# Convex Hull Algorithm

· Process the points in left to right order



Lecture 8 - Computational Geometry





























































# Convex Hull Algorithm • Done! Lecture 8 - Computational Geometry 43







# Time Complexity of Graham's Scan

- Sorting O(n log n)
- During the scan each point is "visited" at most twice
  - Initial visit
  - back up visit (happens at most once)
- Scan O(n)
- Total time O(n log n)
- This is best possible because sorting is reducible to finding convex hull.

Lecture 8 - Computational Geometry

47

#### Exercise

• Find an algorithm that, given two sets of points A and B on the plane, determines if there is a line that separates the two sets.

Lecture 8 - Computational Geometry

-10

#### Notes on Convex Hull

- O(n log n)
  - Graham (1972)
- O(n h) algorithm where h is the size of hull
  - Jarvis' March, "Gift wrapping" (1973)
  - Output sensitive algorithm
- O(n log h) algorithm where h is size of hull
- Kirkpatrick and Seidel (1986)
- d-dimensional Convex Hull
  - $\Omega(n^{d/2})$  in the worst case because the output can be this large.

Lecture 8 - Computational Geometry



# report the point and all the lines that meet there. Report the segment and all the lines that meet on it. Lecture 8 - Computational Geometry 51



# Polygon Intersection • What if no line segment intersections? Lecture 8 - Computational Geometry 53



#### Issues

• With n line segments there may be O(n2) intersections.



- · Goal: Good output sensitive algorithm
  - O(n log n + s) would be ideal where s is the number of intersections.

Lecture 8 - Computational Geometry

55

# Plane Sweep Algorithm

- Sweep a plane vertically from top to bottom maintaining the set of known future events.
- **Events** 
  - Beginning of a segment
  - End of a segment
  - Intersection to two "adjacent" segments



#### Segment List

· We maintain ordered list of segments



Lecture 8 - Computational Geometry

#### Key Idea in the Algorithm

- Just before an intersection event the two line segments must be adjacent in the segment order.
- When a new adjacency occurs between two lines we must check for a possible new intersection event.

Lecture 8 - Computational Geometry

#### Initialization

- Event Queue
  - contains all the beginning points and all the end points of segments ordered by decreasing y value.



Event Queue  $b_a, b_b, b_c, b_d, e_d, b_e, e_b, e_e, e_a, e_c$ 

59

Segment List

Empty

Lecture 8 - Computational Geometry

# Algorithm

• Remove the next event from the event queue



begin segment event

1. Insert b into the segment list between a and c Check for intersections with

adjacent segments (a,b) and (b,c), and add any to event queue

Delete b from the segment list Check for intersections with adjacent segments (a,c), and add any to event queue

Lecture 8 - Computational Geometry





































### Finding Line Segment Intersections

- Given line segments  $(p_1,p_2),(q_1,q_2)$  and  $(r_1,r_2),(s_1,s_2)$  do they intersect, and if so where.
- Where? Solve
  - $$\begin{split} &-0 = (q_2 p_2)x + (p_1 q_1)y + p_2q_1 p_1q_2 \\ &-0 = (s_2 r_2)x + (r_1 s_1)y + r_2s_1 r_1s_2 \end{split}$$
- If?
  - $(p_1,p_2)$  and  $(q_1,q_2)$  on opposite sides of line  $(r_1,r_2),(s_1,s_2)$  and
  - $(r_1,r_2)$  and  $(s_1,s_2)$  on opposite sides of line  $(p_1,p_2),(q_1,q_2)$

Lecture 8 - Computational Geometry

Opposite Sides  $(s_1,s_2) \qquad (q_1,q_2) \qquad (r_1,r_2)$   $(s_1,s_2) \qquad (r_1,r_2) \qquad (r_1,r_2)$  Lecture 8 - Computational Geometry 80

#### Exercise

 A simple polygon is one that does not intersect itself. A polygon is given as a sequence of points (x<sub>1</sub>,y<sub>1</sub>), (x<sub>2</sub>,y<sub>2</sub>),... (x<sub>n</sub>,y<sub>n</sub>),





mple

• Design an algorithm for determining if a polygon is simple or not.

Lecture 8 - Computational Geometry

### Notes on Line Segment Intersection

- Total time for plane sweep algorithm is
   O(n log n + s log n) where s is the number of
   intersections.
  - n log n for the initial sorting
  - log n per event
- Plane sweep algorithms were pioneered by Shamos and Hoey (1975).
- Intersection Reporting Bentley and Ottmann (1979)

Lecture 8 - Computational Geometry





# Linear Size of Voronoi Diagram

• The Voronoi Diagram is a planar embedding so it obeys Euler's equation V-E+F=2



#### Linear Size of Voronoi Diagram

- F = E V + 2 (Euler's equation)
- n = F (one site per face)
- 2E ≥ 3V because each vertex is of degree at least 3 and each edge has 2 vertices.
- $n \ge 3V/2 V + 2 = V/2 + 2$
- $2n 2 \ge V$
- n > E (2n 2) + 2
- 3n 4 <u>></u> E

Lecture 8 - Computational Geometry

### Properties Voronoi Diagram

1. A vertex is the center of a circle through at



# Properties Voronoi Diagram

2. A point on a perpendicular bisector of sites p and q is on an edge if the circle centered at the point through p and q contains no other sites.



#### Fortune's Sweep

- We maintain a "beach line," a sequence of parabolic segments that is the set of points equidistant from a site and the sweep line.
- Events
  - Site event new site is encountered by the sweep
  - Circle event new vertex is inserted into the Voronoi diagram

Lecture 8 - Computational Geometry



























#### Output

 For each site output the vertices in clockwise order.
 When a circle event occurs add to the vertex list of the three (or more) sites.



#### Complexity

- Number of segments in the beach line  $\leq 2n$ 
  - Each site event adds at most 2 segments.
- Number of circle event insertions ≤ 2n
  - Each site event creates at most 2 circle events.
- Time per event is O(log n)
  - Insert new segments into the segment tree.
  - Insert new circle events into the event queue
  - Delete circle events from the event queue
- Total time is O(n log n)

Lecture 8 - Computational Geometry

104

#### Voronoi Diagram Notes

- Voronoi diagram
  - Dirichlet (1850), Voronoi (1907)
- O(n log n) algorithm
  - Divide and conquer Shamos and Hoey (1975)
  - Plane sweep Fortune (1987)

Lecture 8 - Computational Geometry

105

#### Exercise

 Give an O(n log n) algorithm which given a set of n points on the plane, for each point finds its nearest neighbor.

Lecture 8 - Computational Geometry

400

#### **Numerics**

- Computational geometry algorithms need exact arithmetic over rational numbers or algebraic numbers (solutions to polynomial equations over rationals).
  - In most cases there are predicates P(x,y) that need to be checked.
  - Example of predicates are x < y and x = y
- Checking such predicates is very time consuming.
  - There are techniques like interval arithmetic to avoid these exact computations.

Lecture 8 - Computational Geometry

107

#### More Computational Geometry Problems

- · Nearest neighbor search
- · Closest pair
- · Union of objects
- Silhouette

Lecture 8 - Computational Geometry