
Reduction of 
SUBSET-SUM-OPTIMIZATION to 

SUBSET-SUM-DECISION

Chad Parry



Subset Sum

• The Subset Sum problem involves 
searching through a collection of numbers 
to find a subset that sums to a certain 
number.

• The Subset Sum problem is known to be 
NP-complete.



SUBSET-SUM-DECISION

• Problem statement:
– Input:

• A collection of nonnegative integers A
• A nonnegative integer b

– Output:
• Boolean value indicating whether some subset of 

the collection sums to b



SUBSET-SUM-DECISION Example

• Suppose you are given as inputs:
– The collection A = {2, 3, 5, 7, 10}
– The sum 14

• The output is:
– TRUE
– 14 = 2 + 5 + 7



SUBSET-SUM-OPTIMIZATION

• Problem statement:
– Input:

• A collection of nonnegative integers A
• A nonnegative integer b

– Output:
• A nonnegative integer b’, which is the largest 

integer such that:
– b’ � b, and
– Subset-Sum-Decision(A, b’) is TRUE



SUBSET-SUM-OPTIMIZATION
Example

• Suppose you are given as inputs:
– The collection A = {2, 3, 5, 7, 10}
– The sum 16

• The output is:
– 15
– 15 = 5 + 10



Reduction Requirements

• The purpose of the reduction is to write an 
algorithm for SUBSET-SUM-OPTIMIZATION

which uses SUBSET-SUM-DECISION as an 
oracle.

• A good reduction should run in polynomial 
time using the oracle.



Naïve Approach #1

• A brute force search though all 
combinations of the collection A will take 
exponential time.

• Any solution that involves guessing 
elements to remove from A will probably 
take exponential time.

• This approach doesn’t take advantage of 
the power of the oracle.



Naïve Approach #2

• Enumeration of the domain of b also takes 
exponential time.
– The number b can be expressed with O(log b) 

bits.
– There are (b + 1) integers to visit.
– (b + 1) is exponential with respect to log b.



Reduction Solution

• The algorithm is only a few lines long.

SUBSET-SUM-OPTIMIZATION(A, b)
for i � floor(log2b) downto 0 do

A � A + { 2i }
for i � floor(log2b) downto 0 do

A � A - { 2i }
if not SUBSET-SUM-DECISION(A, b) then

b � b - 2i

return b



Adding Powers of Two
• The first step is to enumerate all the 

powers of two up to b and add them to A.

SUBSET-SUM-OPTIMIZATION(A, b)
for i � floor(log2b) downto 0 do

A � A + { 2i }
for i � floor(log2b) downto 0 do

A � A - { 2i }
if not SUBSET-SUM-DECISION(A, b) then

b � b - 2i

return b



Reduction Main Loop
• The next step is the main loop.
• Each power of two is removed from A.

SUBSET-SUM-OPTIMIZATION(A, b)
for i � floor(log2b) downto 0 do

A � A + { 2i }
for i � floor(log2b) downto 0 do

A � A - { 2i }
if not SUBSET-SUM-DECISION(A, b) then

b � b - 2i

return b



Loop Invariants

• There are two loop invariants that allow 
the algorithm to work.

1. b is always greater than or equal to the 
optimal solution.

2. A contains a subset sum to b.



No Sum Exists Condition
• When the oracle returns FALSE, the 

largest valid solution is (b - 2i).

SUBSET-SUM-OPTIMIZATION(A, b)
for i � floor(log2b) downto 0 do

A � A + { 2i }
for i � floor(log2b) downto 0 do

A � A - { 2i }
if not SUBSET-SUM-DECISION(A, b) then

b � b - 2i

return b



Return the Optimal Sum
• Finally the original collection A is restored.
• By this time b is optimal.

SUBSET-SUM-OPTIMIZATION(A, b)
for i � floor(log2b) downto 0 do

A � A + { 2i }
for i � floor(log2b) downto 0 do

A � A - { 2i }
if not SUBSET-SUM-DECISION(A, b) then

b � b - 2i

return b



Execution Example

Initial Values:
• A’ = {1, 5, 21}
• b = 15



Execution Example

Adding powers of two:
• A’ = {1, 5, 21, 8, 4, 2, 1}
• b = 15



Execution Example

Main loop initialization:
• A’ = {1, 5, 21, 8, 4, 2, 1}
• b = 15
• i = 3, 2i = 8



Execution Example

Remove the power of two:
• A’ = {1, 5, 21, 8, 4, 2, 1}
• b = 15
• i = 3, 2i = 8

X



Execution Example

Try the oracle:
• A’ = {1, 5, 21, 4, 2, 1}
• b = 15
• i = 3, 2i = 8
• SUBSET-SUM-DECISION(A’, b) = FALSE



Execution Example

No sum exists:
• A’ = {1, 5, 21, 4, 2, 1}
• b = 15 - 8 = 7
• i = 3, 2i = 8



Execution Example

Next loop iteration:
• A’ = {1, 5, 21, 4, 2, 1}
• b = 7
• i = 2, 2i = 4



Execution Example

Remove the power of two:
• A’ = {1, 5, 21, 4, 2, 1}
• b = 7
• i = 2, 2i = 4

X



Execution Example

Try the oracle:
• A’ = {1, 5, 21, 2, 1}
• b = 7
• i = 2, 2i = 4
• SUBSET-SUM-DECISION(A’, b) = TRUE



Execution Example

Next loop iteration:
• A’ = {1, 5, 21, 2, 1}
• b = 7
• i = 1, 2i = 2



Execution Example

Remove the power of two:
• A’ = {1, 5, 21, 2, 1}
• b = 7
• i = 1, 2i = 2

X



Execution Example

Try the oracle:
• A’ = {1, 5, 21, 1}
• b = 7
• i = 1, 2i = 2
• SUBSET-SUM-DECISION(A’, b) = TRUE



Execution Example

Next loop iteration:
• A’ = {1, 5, 21, 1}
• b = 7
• i = 0, 2i = 1



Execution Example

Remove the power of two:
• A’ = {1, 5, 21, 1}
• b = 7
• i = 0, 2i = 1

X



Execution Example

Try the oracle:
• A’ = {1, 5, 21}
• b = 7
• i = 0, 2i = 1
• SUBSET-SUM-DECISION(A’, b) = FALSE



Execution Example

No sum exists:
• A’ = {1, 5, 21}
• b = 7 - 1 = 6
• i = 0, 2i = 1



Execution Example

Return the optimal sum:
• A’ = {1, 5, 21}
• b = 6



Summary

• Each loop has O(log b) iterations, which is 
linear with respect to the size of b.

• The correct solution takes advantage of 
the NP-complete power of the oracle.


