Reduction of
SUBSET-SUM-OPTIMIZATION to
SUBSET-SUM-DECISION
Chad Parry

Subset Sum

- The Subset Sum problem involves searching through a collection of numbers to find a subset that sums to a certain number.
- The Subset Sum problem is known to be NP-complete.

Subset-Sum-Decision

- Problem statement:
- Input:
- A collection of nonnegative integers A
- A nonnegative integer b
-Output:
- Boolean value indicating whether some subset of the collection sums to b

SUBSET-SuM-DECISION Example

- Suppose you are given as inputs:
- The collection $A=\{2,3,5,7,10\}$
- The sum 14
- The output is:
- TRUE
$-14=2+5+7$

SUbSET-SUM-Optimization

- Problem statement:
- Input:
- A collection of nonnegative integers A
- A nonnegative integer b
- Output:
- A nonnegative integer b^{\prime}, which is the largest integer such that:
$-b^{\prime} \leq b$, and
- Subset-Sum-Decision $\left(A, b^{\prime}\right)$ is TRUE

SUBSET-SUM-Optimization Example

- Suppose you are given as inputs:
- The collection $A=\{2,3,5,7,10\}$
- The sum 16
- The output is:
- 15
$-15=5+10$

Reduction Requirements

- The purpose of the reduction is to write an algorithm for Subset-Sum-Optimization which uses Subset-Sum-Decision as an oracle.
- A good reduction should run in polynomial time using the oracle.

Naïve Approach \#2

- Enumeration of the domain of b also takes exponential time.
- The number b can be expressed with $\mathrm{O}(\log b)$ bits.
- There are $(b+1)$ integers to visit.
$-(b+1)$ is exponential with respect to $\log b$.

Adding Powers of Two

- The first step is to enumerate all the powers of two up to b and add them to A.

$$
\begin{aligned}
& \text { Subset-Sum-Optimization }(A, b) \\
& \text { for } i \leftarrow \text { floor }\left(\log _{2} b\right) \text { downto } 0 \text { do } \\
& A \leftarrow A+\left\{2^{i}\right\} \\
& \text { for } i \leftarrow \text { floor }\left(\log _{2} b\right) \text { downto } 0 \text { do } \\
& A \leftarrow A-\left\{2^{i}\right\} \\
& \text { if not } \operatorname{SUBSET}-\operatorname{Sum-DeCISION~}(A, b) \text { then } \\
& \quad b \leftarrow b-2^{i} \\
& \text { return } b
\end{aligned}
$$

Naïve Approach \#1

- A brute force search though all combinations of the collection A will take exponential time.
- Any solution that involves guessing elements to remove from A will probably take exponential time.
- This approach doesn't take advantage of the power of the oracle.

Reduction Solution

- The algorithm is only a few lines long.

Subset-Sum-Optimization (A, b)
for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do

$$
A \leftarrow A+\left\{2^{i}\right\}
$$

for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do

$$
A \leftarrow A-\left\{2^{i}\right\}
$$

if not $\operatorname{Subset-Sum-Decision}(A, b)$ then

$$
b \leftarrow b-2^{i}
$$

return b

Reduction Main Loop

- The next step is the main loop.
- Each power of two is removed from A.

$$
\begin{aligned}
& \text { Subset-Sum-Optimization }(A, b) \\
& \qquad \begin{array}{l}
\text { for } i \leftarrow \text { floor }\left(\log _{2} b\right) \text { downto } 0 \text { do } \\
\\
A \leftarrow A+\left\{2^{i}\right\} \\
\text { for } i \leftarrow \text { floor }\left(\log _{2} b\right) \text { downto } 0 \text { do } \\
A \leftarrow A-\left\{2^{i}\right\} \\
\text { if not } \operatorname{SuBSET}-\operatorname{Sum-DeCision}(A, b) \text { then } \\
\quad b \leftarrow b-2^{i} \\
\text { return } b
\end{array}
\end{aligned}
$$

Loop Invariants

- There are two loop invariants that allow the algorithm to work.

1. b is always greater than or equal to the optimal solution.
2. A contains a subset sum to b.

No Sum Exists Condition

- When the oracle returns FALSE, the largest valid solution is $\left(b-2^{\prime}\right)$.

Subset-Sum-Optimization (A, b)
for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do $A \leftarrow A+\left\{2^{i}\right\}$
for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do $A \leftarrow A-\left\{2^{i}\right\}$ if not $\operatorname{Subset}-\operatorname{Sum}-\operatorname{Decision}(A, b)$ then $b \leftarrow b-2^{i}$
return b

Return the Optimal Sum

- Finally the original collection A is restored.
- By this time b is optimal.

Subset-Sum-Optimization (A, b)

Execution Example

Initial Values:

- $A^{\prime}=\{1,5,21\}$
- $b=15$
for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do $A \leftarrow A+\left\{2^{i}\right\}$
for $i \leftarrow$ floor $\left(\log _{2} b\right)$ downto 0 do
$A \leftarrow A-\left\{2^{i}\right\}$
if not $\operatorname{Subset-Sum-\operatorname {Decision}(}(A, b)$ then

$$
b \leftarrow b-2^{i}
$$

return b

Execution Example

Adding powers of two:

- $A^{\prime}=\{1,5,21,8,4,2,1\}$
- $b=15$

Execution Example

Main loop initialization:

- $A^{\prime}=\{1,5,21,8,4,2,1\}$
- $b=15$
- $i=3,2^{i}=8$

Execution Example

Remove the power of two:

- $A^{\prime}=\{1,5,21, \mathbb{Z} 4,2,1\}$
- $b=15$
- $i=3,2^{i}=8$

Execution Example

Try the oracle:

- $A^{\prime}=\{1,5,21,4,2,1\}$
- $b=15$
- $i=3,2^{i}=8$
- Subset-Sum-Decision($\left.A^{\prime}, \mathrm{b}\right)=$ FALSE

Execution Example

No sum exists:

- $A^{\prime}=\{1,5,21,4,2,1\}$
- $b=15-8=7$
- $i=3,2^{i}=8$

Execution Example

Next loop iteration:

- $A^{\prime}=\{1,5,21,4,2,1\}$
- $b=7$
- $i=2,2^{i}=4$

Execution Example

Remove the power of two:

- $A^{\prime}=\{1,5,21, \mathcal{X}, 2,1\}$
- $b=7$
- $i=2,2^{i}=4$

Execution Example

Try the oracle:

- $A^{\prime}=\{1,5,21,2,1\}$
- $b=7$
- $i=2,2^{i}=4$
- Subset-Sum-Decision $\left(A^{\prime}, ~ b\right)=$ TRUE

Execution Example

Next loop iteration:

- $A^{\prime}=\{1,5,21,2,1\}$
- $b=7$
- $i=1,2^{i}=2$

Execution Example

Remove the power of two:

- $A^{\prime}=\{1,5,21, \mathbb{X} 1\}$
- $b=7$
- $i=1,2^{i}=2$

Execution Example

Try the oracle:

- $A^{\prime}=\{1,5,21,1\}$
- $b=7$
- $i=1,2^{i}=2$
- $\operatorname{Subset-Sum-Decision}\left(A^{\prime}, b\right)=\operatorname{TRUE}$

Execution Example

Remove the power of two:

- $A^{\prime}=\{1,5,21, X\}$
- $b=7$
- $i=0,2^{i}=1$

Execution Example

Next loop iteration:

- $A^{\prime}=\{1,5,21,1\}$
- $b=7$
- $i=0,2^{i}=1$

Execution Example
Remove the power of two:
- $A^{\prime}=\{1,5,21, X\}$
- $b=7$
- $i=0,2^{i}=1$

Execution Example

Try the oracle:

- $A^{\prime}=\{1,5,21\}$
- $b=7$
- $i=0,2^{i}=1$
- Subset-Sum-Decision $\left(A^{\prime}, b\right)=$ FALSE

Execution Example
No sum exists:
• $A^{\prime}=\{1,5,21\}$
- $b=7-1=6$
• $i=0,2^{i}=1$

Execution Example

Return the optimal sum:

- $A^{\prime}=\{1,5,21\}$
- $b=6$

Summary

- Each loop has $\mathrm{O}(\log b)$ iterations, which is linear with respect to the size of b.
- The correct solution takes advantage of the NP-complete power of the oracle.

