Problem 1 (10 points):
Page 112, Exercise 12.

Problem 2 (10 points):
Page 189, Exercise 3.

Problem 3 (10 points):
Page 191, Exercise 6

Problem 4 (10 points):

Page 195, Exercise 14.

Problem 5 (10 points):

Let $G=(V, E)$ be a directed graph, where each edge $e=(u, v)$ has a value r_{e} with $0 \leq r_{e} \leq 1$ that represents the reliability of a communication channel from u to v. We interpret r_{e} as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path from vertex s to vertex t.

Problem 6 (10 points):

Let $G=(V, E)$ be a directed graph with integer edge weights in the range $0, \ldots, 10$. Modify Dijkstra's algorithm to compute the shortest paths from a given source vertex s in $O(n+m)$ time where $n=|V|$ and $m=|E|$.

