Homework 4, Due Monday, February 4, 2013

Problem 1 (10 points):
Chapter 4, Exercise 2, Page 189.
Problem 2 (10 points):
Chapter 4, Exercise 8, Page 192. (Hint: Fact 4.17)
Problem 3 (10 points):
Chapter 4, Exercise 20, Page 199.
Problem 4 (10 points):
Build the Huffman code for the English alphabet using the following letter frequencies:

a	8.167	f	2.228	k	0.772	o	7.507	s	6.327	w	2.360
b	1.492	g	2.015	l	4.025	p	1.929	t	9.056	x	0.150
c	2.782	h	6.094	m	2.406	q	0.095	u	2.758	y	1.974
d	4.253	i	6.966	n	6.749	r	5.987	v	0.978	z	0.074
e	12.702	j	0.153								

Corrected data, 1-30-13.

Problem 5 (10 points):

Solve the following recurrences:
a) $T(n)=2 T(n / 2)+n^{3}$ for $n \geq 2 ; T(1)=1$;
b) $T(n)=T(9 n / 10)+n$ for $n \geq 2 ; T(1)=1$;

In this and the following problems, you can ignore rounding issues (just round down to the nearest integer). A big-Oh answer is sufficient.

Problem 6 (10 points):
Solve the following recurrences:
a) $T(n)=16 T(n / 4)+n^{2}$ for $n \geq 2 ; T(1)=1$;
b) $T(n)=7 T(n / 3)+n^{2}$ for $n \geq 2 ; T(1)=1$;

Problem 7 (10 points):

Solve the following recurrences (if you are stuck on these, ask for help from the instructor, TA, or someone else. Don't spend too much time on them):
a) $T(n)=T(\lfloor\sqrt{n}\rfloor)+1$ for $n \geq 2 ; T(1)=1$;
b) $T(n)=2 T(\lfloor\sqrt{n}\rfloor)+1$ for $n \geq 2 ; T(1)=1$;

Clarification: Treat the square root as an integer valued function which rounds down to the integer below. The formula's have been updated.

