Homework 5, Due Monday, February 11, 2013

Note: these problems come from old midterm exams, and should be solvable in substantially less time than the typical homework problems.

Problem 1 (10 points):

Consider the stable matching problem.
a) Given sets M and W with $|M|=|W|=n$, describe a set of preference lists for the elements of M and W such that the stable matching problem for M and W has a unique solution.
b) Prove that your instance from part a) has a unique stable matching. You may use the following definition of stable matching: For matching with m matched to w and m^{\prime} matched to $w^{\prime},\left(m, w^{\prime}\right)$ is an instability if m prefers w^{\prime} to w and w^{\prime} prefers m to m^{\prime}. A M matching is said to be stable if it has no instabilities.

Problem 2 (10 points):

Let $G=(V, E)$ be an undirected graph.
a) True or false: If G is a tree, then G is bipartite. Justify your answer.
b) True or false: If G is not bipartite, then the shortest cycle in G has odd length. Justify your answer.

Problem 3 (10 points):

Let $G=(V, E)$ be a directed graph with n vertices.
a) True or false: If G has at least n edges, then G has a cycle. Justify your answer.
b) True or false: If every vertex of G has out degree at least one, then G has a cycle. Justify your answer.

Problem 4 (10 points):

Let $G=(V, E)$ be an undirected graph with edge weights. Assume that all edge weights are distinct.
a) True or false: If e is the minimum weight edge, e is in the minimum spanning tree. Justify your answer.
b) True or false: If e is the maximum weight edge, e cannot be in the minimum spanning tree. Justify your answer.

Problem 5 (10 points):

Give solutions to the following recurrences. Justify your answers.
a)

$$
T(n)= \begin{cases}T\left(\frac{n}{4}\right)+n & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

b)

$$
T(n)= \begin{cases}9 T\left(\frac{n}{3}\right)+n^{2} & \text { if } n>1 \\ 1 & \text { if } n \leq 1\end{cases}
$$

Problem 6 (10 points):

The sequence $A=a_{1} a_{2} \ldots a_{n}$ is a subsequence of $B=b_{1} b_{2} \ldots b_{m}$ if the elements of A occur in order in B, or more formally, if $a_{1}=b_{i_{1}}, a_{2}=b_{i_{2}}, \ldots, a_{n}=b_{i_{n}}$ for $i_{1}<i_{2}<\cdots<i_{n}$.

Give an $O(n+m)$ time algorithm to test if A is a subsequence of B. Justify that your algorithm is correct and that it satisfies the run time bound.

