
University of Washington April 30, 2011
Department of Computer Science and Engineering
CSEP 521, Spring 2011

Midterm Exam, Wednesday, April 27, 2011

NAME:

Instructions:

• Closed book, closed notes, no calculators

• Time limit: 60 minutes

• Answer the problems on the exam paper.

• If you need extra space use the back of a page

• Problems are not of equal difficulty, if you get stuck on
a problem, move on.
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Problem 1 (10 points):
Consider the stable matching algorithm. Show how a w can be matched with all of the m’s during
the course of the algorithm. Hint: give the preference lists and describe an execution of the
algorithm where some w is matched with each m in turn.

Solution:
Let M = {m1, . . . ,mn}, and W = {w1, . . . , wn}.
For each mi ∈M , suppose that w1 is listed first in the preference lists. The remaining order of the
mi lists can be arbitrary.
Suppose that w1 has the preference order mn, mn−1, . . . ,m1.
If the mi’s propose in the order m1, . . . ,mn, they will each propose to w1, be accepted, and then
dumped in the next round.

Problem 2 (10 points):
Let G = (V,E) be an undirected graph, and v a vertex.

Give an O(n + m) time algorithm that finds the shortest cycle in G that contains the vertext v.

Solution:
The initial idea is to construct a BFS tree from v and take use the first non-tree edge to complete
a cycle. The problem is that this cycle does not necessarily include v.
To fix this problem, we label each vertex in the graph by the neighbor of v that it is descended
from in the BFS tree. The first non-tree edge e = (x, y) with distinct labels can then be used to
complete a cycle. This cycle includes v, since the paths of tree edges from x and y go back to
distinct neighbors of v.



Problem 3 (10 points):
Consider the following undirected graph G.
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a) Highlight the edges of G that are in a minimum spanning tree.

Solution:

Edges: (c, f), (f, a), (a, d), (a, b), (f, h), (b, e), (e, g), (g, j), (i, j).

b) Use the Edge Inclusion Lemma to argue that the edge (c, f) is in every Minimum Spanning
Tree of G.

Solution:

Edge Inclusion Lemma: Suppose the edge costs are distinct. Let e = (u, v) be the minimum
cost edge between S and V − S. e is guaranteed to be in every minimum spanning tree.

(c, f) is the minimum cost edge between {c} and {a, b, d, e, f, g, h, i, j}.

c) Use the Edge Exclusion Lemma to argue that the edge (b, j) is never in a Minimum Spanning
Tree of G.

Solution:

Edge Exclusion Lemma: Suppose the edge costs are distinct. Let e = (u, v) be the maximum
cost edge on a cycle C. e is never in a minimun spanning tree.

(b, j) is the maximum cost edge on the cycle (b, e, g, j)

Problem 4 (10 points):
The binpacking problem is: Given a collection of items I = {i1, . . . , in} where each item ij has a
sj , an integer K, and a collection of bins B = {b1, . . . , bm} assign the items to bins such that the
sum of the sizes of items assigned to each bin bi is at most K. The goal is to minimize the number
of bins that recieve items, i.e., to pack the items into as few bins as possible.

A greedy algorithm for the problem considers the items in order, and places each item in the first
bin that has enough remaining space to hold the item.

Assume that the bin size is K = 3, and the items have sizes 1, 2, or 3.

a) Give an example that shows that the greedy algorithm does not necessary find the optimal
solution (minimizes the number of bins).



Solution:

Consider items with size 1, 1, 2, and 2 respectively. If they are packed by the greedy algorithm
in that order, the first bin gets two items of size 1, and the next two bins each get an item of
size 2, so three bins are used all together. A better packing is to put an item of size 1 with
an item of size 2 in each of the bins.

b) Describe an algorithm which find an optimal solution. Explain why your algorithm minimizes
the number of bins used. (You do not need to give a formal proof - just identify the key ideas.)

Solution:

First sort the items in non-increasing order, so that items of size 3 come first, followed by
items of size 2, and finally, items of size 1. Then place the items with the greedy algorithm,
so there are bins with items of size 3, followed by bins of size 2. The items of size 1 are then
paced on top of the items of size 2 to fill up those bins.

The key to getting an optimal packing in this case is to match up items of size 1 and items
of size 2, so an alternate approach would be to pair up the items first to fill as many bins as
possible.

Problem 5 (10 points):

Give solutions to the following recurrences. Justify your answers.

a)

T (n) =

{
T (9n

11 ) + n if n > 1
1 if n ≤ 1

Solution:

Unrolling the recurrence:
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Hence, T (n) = O(n).

b)

T (n) =

{
16T (n

4 ) + n2 if n > 1
1 if n ≤ 1



Solution:

To solve this, we expand the recursion tree, and look at the work per level. Since we are
dividing the problem size by 4 at each recursion, the depth is log4 n. The work on the first
level in n2. The work on the second level is 16(n/4)2 = n2, and the work on the third level is
162(n/16)2 = n2, and so on. Every level has n2 work, so the total is n2 log4 n = O(n log n).

Problem 6 (10 points):

Given an array of n real numbers, consider the problem of finding the maximum sum in any
contiguous subvector of the input, for example, in the array

{31,−41, 59, 26,−53, 58, 97,−93,−23, 84}

the maximum is achieved by summing the third through seventh elements, where 59+26+(−53)+
58 + 97 = 187. When all numbers are positive, the entire array is the answer, while when all
numbers are negative, the empty array maximizes the total at 0.

Give an O(n log n) divide and conquer algorithm for solving this problem.

Solution:

The basic idea of the divide an conquer algorithm is to split the array at the midpoint, and find
the best solution in the left or right halves of the array. The recursion hits bottom when it gets
to a single element, where it return the maximum of the element and 0. The key idea is to test
whether there is a better solution than the left or right solutions by looking for a MSCS that spans
the boundary between the left and right subproblem. We find the maximum solution by a linear
scan in each direction.

Suppose the elements are S1, S2, ..., Sn.

The key subroutines for this algorithm are MaxSumStarting(i, j) which finds the maximum sum
Si + Si+1 + · · · + Sk for i ≤ k ≤ j and MaxSumEnding(i, j), which finds the maximum sum
Sk + Sk+1 + · · ·+ Sj for i ≤ k ≤ j. These two routines can be implemented by iterative algorithms
which run in O(j − i) time.

The overall recursive algorithm is:

MSCS(i, j)
if i = j;

return Max(Si, 0);
m := (i + j)/2;
left := MSCS(i, m);
right := MSCS(m + 1, j);
leftSpan := Max(MaxSumEnding(i, m), 0);
rightSpan := Max(MaxSumStarting(m + 1, j), 0;
return Max(left, right, leftSpan + rightSpan);


