
CSEP 521 
Algorithms 

Divide and Conquer 
Richard Anderson 

With Special Cameo Appearance by 
Larry Ruzzo 



Divide and Conquer Algorithms 
Split into sub problems 
Recursively solve the problem 
Combine solutions 
 
Make progress in the split and combine stages 

Quicksort – progress made at the split step 
Mergesort – progress made at the combine step 

D&C Algorithms 
Strassen’s Algorithm – Matrix Multiplication 
Inversions 
Median 
Closest Pair 
Integer Multiplication 
FFT 
… 
 



Suppose we've already invented DumbSort, 
taking time n2	



Try Just One Level of divide & conquer:	



DumbSort(first  n/2 elements) 	



DumbSort(last  n/2 elements)	



Merge results	



Time:  2 (n/2)2 + n = n2/2 + n ≪ n2	



Almost twice as fast!	



3	



divide & conquer – the key idea 

D&C in a 	


nutshell	
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d&c approach, cont. 

Moral 1: “two halves are better than a whole”	


	

Two problems of half size are better than one full-size 
problem, even given O(n) overhead of recombining, since 
the base algorithm has super-linear complexity.	


	


Moral 2: “If a little's good, then more's better”	


	

Two levels of D&C would be almost 4 times faster, 3 levels 
almost 8, etc., even though overhead is growing. ���
Best is usually full recursion down to some small constant 
size (balancing "work" vs "overhead").	



    In the limit: you’ve just rediscovered mergesort!	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	


	


T(n) = 2T(n/2)+cn,  n≥2	


T(1) = 0	



Solution: Θ(n log n) ���
(details later)	

 Lo

g 
n 

le
ve

ls
	



O(n) ���
work���
per���
level	





What you really need to know 
about recurrences 

Work per level changes geometrically with 
the level 

Geometrically increasing (x > 1) 
The bottom level wins – count leaves 

Geometrically decreasing  (x < 1) 
The top level wins – count top level work 

Balanced (x = 1) 
Equal contribution – top • levels (e.g. “n logn”) 



T(n) = aT(n/b) + nc 

Balanced:  a = bc 

 
 
Increasing: a > bc 

 
 
Decreasing: a < bc 



Recurrences 

Next: how to solve them	
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mergesort (review) 

Mergesort: (recursively) sort 2 half-lists, then 
merge results.	


	


T(n) = 2T(n/2)+cn,  n≥2	


T(1) = 0	



Solution: Θ(n log n) ���
(details later)	
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Lo
g 

n 
le

ve
ls
	



O(n) ���
work���
per���
level	



now	





Solve:  T(1) = c 
 T(n) = 2 T(n/2) + cn 
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Level 	

Num 	

Size 	

Work	


	

0 	

 	

1=20 	

n
	

cn	


	

1 	

2=21 	

n/2 	

2 c n/2	


	

2 	

4=22 	

n/4 	

4 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

2i 	

n/2i 	

2i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

2k-1 	

n/2k-1 	

2k-1 c n/2k-1	



(add last col)	



Level	

 Num	

 Size	

 Work	



0	

 1 = 20	

 n	

 cn	



1	

 2 = 21	

 n/2	

 2cn/2	



2	

 4 = 22	

 n/4	

 4cn/4	



…	

 …	

 …	

 …	



i	

 2i	

 n/2i	

 2i c n/2i	



…	

 …	

 …	

 …	



k-1	

 2k-1	

	

 n/2k-1	

 2k-1 c n/2k-1	



k	

 2k 	

	

 n/2k = 1	

 2k T(1)	

n = 2k ; k = log2n	


	


Total Work:  c n (1+log2n) 	





Solve:  T(1) = c 
 T(n) = 4 T(n/2) + cn 
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 .	

.	



.	

.	

.	



Level 	

Num 	

Size 	

Work	


	

0 	

1=40 	

n 	

cn	


	

1 	

4=41 	

n/2 	

4 c n/2	


	

2 	

16=42 	

n/4 	

16 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

4i 	

n/2i 	

4i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

4k-1 	

n/2k-1 	

4k-1 c n/2k-1	



	

k 	

4k 	

n/2k=1 	

4k T(1)	



€ 

4 i cn / 2i = O(n2
i=0

k∑ )

Level	

 Num	

 Size	

 Work	



0	

 1 = 40	

 n	

 cn	



1	

 4 = 41	

 n/2	

 4cn/2	



2	

 16 = 42	

 n/4	

 16cn/4	



…	

 …	

 …	

 …	



i	

 4i	

 n/2i	

 4i c n/2i	



…	

 …	

 …	

 …	



k-1	

 4k-1	

	

 n/2k-1	

 4k-1 c n/2k-1	



k	

 4k 	

	

 n/2k = 1	

 4k T(1)	

n = 2k ; k = log2n	


	


Total Work:  T(n) = 	

 4k = (22)k= 

(2k)2 = n2	





Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn 
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Level 	

Num 	

Size 	

Work	


	

0 	

1=30 	

n 	

cn	


	

1 	

3=31 	

n/2 	

3 c n/2	


	

2 	

9=32 	

n/4 	

9 c n/4	


	

… 	

… 	

… 	

	

…	


	

i 	

3i 	

n/2i 	

3i c n/2i	



	

… 	

… 	

… 	

	

…	


	

k-1 	

3k-1 	

n/2k-1 	

3k-1 c n/2k-1	



	

k 	

3k 	

n/2k=1 	

3k T(1)	



.	

 .	

  .	


  .	

 .	

.	



.	

.	

.	



n = 2k ; k = log2n	


	


Total Work:  T(n) = 	

 ∑ =

k
i

ii /cn0 23

Level	

 Num	

 Size	

 Work	



0	

 1 = 30	

 n	

 cn	



1	

 3 = 31	

 n/2	

 3cn/2	



2	

 9 = 32	

 n/4	

 9cn/4	



…	

 …	

 …	

 …	



i	

 3i	

 n/2i	

 3i c n/2i	



…	

 …	

 …	

 …	



k-1	

 3k-1	

	

 n/2k-1	

 3k-1 c n/2k-1	



k	

 3k 	

	

 n/2k = 1	

 3k T(1)	





a useful identity 

Theorem:	


1 + x + x2 + x3 + … + xk  =  (xk+1-1)/(x-1)	



proof:	


      y 	

= 1 + x + x2 + x3 + … + xk	



    xy 	

=       x + x2 + x3 + … + xk + xk+1	



  xy-y	

=  xk+1 - 1	


y(x-1)	

=  xk+1 - 1	


      y 	

= (xk+1-1)/(x-1)	
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Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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= 3i cn / 2i
i=0

k
∑

= cn 3i / 2i
i=0

k
∑

= cn 3
2( )

i

i=0

k
∑

= cn
3
2( )

k+1
−1

3
2( )−1

)n(T



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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cn
3
2( )

k+1
−1

3
2( )−1

= 2cn 3
2( )

k+1
−1( )

< 2cn 3
2( )

k+1

= 3cn 3
2( )

k

= 3cn 3
k

2k



Solve:  T(1) = c 
 T(n) = 3 T(n/2) + cn    (cont.) 
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€ 

alogb n

= blogb a( )
logb n

= blogb n( )logb a

= n logb a

3cn 3
k

2k
= 3cn 3

log2 n

2
log2 n

= 3cn 3
log2 n

n
= 3c3log2 n

= 3c n log2 3( )
=O n1.585...( )



divide and conquer – master recurrence 

T(n) = aT(n/b)+cnk for n > b then	


	



a > bk  ⇒ T(n) = 	

 	

[many subprobs → leaves dominate]	



	


a < bk  ⇒ T(n) = Θ(nk)	

 	

[few subprobs → top level dominates]	



	



a = bk  ⇒ T(n) = Θ (nk log n) 	

[balanced → all log n levels contribute]	



	


Fine print:  ���

a ≥ 1; b > 1; c, d, k ≥ 0; T(1) = d; n = bt for some t > 0; ���
a, b, k, t integers. True even if it is ⎡n/b⎤ instead of n/b.	
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)( log abnΘ



master recurrence: proof sketch 

Expanding recurrence as in earlier examples, to get���
	



  T(n) = nh ( d + c S ) ���
	


where  h = logb(a) (tree height) and                      , where x = bk/a.  	



If c = 0 the sum S is irrelevant, and T(n) = O(nh): all the work happens in 
the base cases, of which there are nh, one for each leaf in the recursion 
tree. 	


If c > 0, then the sum matters, and splits into 3 cases (like previous slide):  	



if x < 1, then S < x/(1-x) = O(1).  [S is just the first log n terms of the 
infinite series with that sum].  	



if x = 1, then S = logb(n) = O(log n).   [all terms in the sum are 1 and 
there are that many terms].  	



if x > 1, then S = x • (x1+log
b
(n)-1)/(x-1).  After some algebra, ���

nh * S = O(nk)	
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S = x j
j=1

logb n∑



20	



Example: ���
���

Matrix Multiplication –���
���

Strassen’s Method	
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Multiplying Matrices	



	


	


	


	


	


	


n3 multiplications,  n3-n2 additions	
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Simple Matrix Multiply	



for i = 1 to n	


for j = I to n	



C[i,j] = 0	


for k = 1 to n	



C[i,j] = C[i,j] + A[i,k] * B[k,j]	



n3 multiplications,  n3-n2 additions!
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Multiplying Matrices	
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Multiplying Matrices	
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Multiplying Matrices	
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
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A11! A12!

A21!

A11B12+A12B22!

A22!

A11B11+A12B21!

B11! B12!

B21! B22!

A21B12+A22B22!A21B11+A22B21!
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Multiplying Matrices	



	


	


	


	


	


	


	



Counting arithmetic operations: ���
T(n) = 8T(n/2) + 4(n/2)2 = 8T(n/2) + n2	



A11! A12!

A21!

A11B12+A12B22!

A22!

A11B11+A12B21!

B11! B12!

B21! B22!

A21B12+A22B22!A21B11+A22B21!
=!
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Multiplying Matrices	



	

 	

   	

1 	

 	

 	

if n = 1	


T(n) = 	


	

 	

   	

8T(n/2) + n2   	

if n > 1	


	



By Master Recurrence, if ���

T(n) = aT(n/b)+cnk & a > bk then ���

T(n) =	

 )()()( 3loglog nnn 8a 2b Θ=Θ=Θ
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Strassen’s algorithm	



Strassen’s algorithm	


Multiply 2x2 matrices using 7 instead of 8 multiplications 
(and lots more than 4 additions)	


	



T(n)=7 T(n/2)+cn2	


7>22  so T(n) is  Θ(n       ) which is O(n2.81)	


	


Asymptotically fastest know algorithm uses O(n2.376) time	


not practical but Strassen’s may be practical provided 
calculations are exact and we stop recursion when matrix 
has size about 100 (maybe 10)	



log27!
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The algorithm	



P1 = A12(B11+ B21)        	

P2 = A21(B12+ B22) 	


P3 = (A11 - A12)B11       	

P4 = (A22 - A21)B22	


P5 = (A22 - A12)(B21 - B22)	


P6 = (A11 - A21)(B12 - B11)	


P7 = (A21 - A12)(B11+ B22)	


	


C11= P1+P3                   	

C12 = P2+P3+P6-P7	



C21= P1+P4+P5+P7      	

C22 = P2+P4	





Example:  
Counting Inversions 

30	





Inversion Problem 

Let a1, . . . an be a permutation of 1 . . n 
(ai, aj) is an inversion if i < j and ai > aj 

 
 
 
Problem: given a permutation, count the number 

of inversions 
This can be done easily in O(n2) time 

Can we do better? 

4, 6, 1, 7, 3, 2, 5 



Application 

Counting inversions can be use to 
measure closeness of ranked preferences 

People rank 20 movies, based on their 
rankings you cluster people who like the same 
types of movies 
 

Can also be used to measure nonlinear 
correlation 



Inversion Problem 

Let a1, . . . an be a permutation of 1 . . n 
(ai, aj) is an inversion if i < j and ai > aj 

 
 
 
Problem: given a permutation, count the number 

of inversions 
This can be done easily in O(n2) time 

Can we do better? 

4, 6, 1, 7, 3, 2, 5 



Counting Inversions 

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14 

Count inversions on lower half 

Count inversions on upper half 

Count the inversions between the halves 



11 12 4 1 7 2 3 15 

11 12 4 1 7 2 3 15 

9 5 16 8 6 13 10 14 

9 5 16 8 6 13 10 14 

Count the Inversions 

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14 

5	

 1	

2	

 3	



15	

 10	
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8	

 6	
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Problem – how do we count 
inversions between sub problems in 

O(n) time? 

Solution – Count inversions while merging 

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16 

                                

Standard merge algorithm – add to inversion count 
when an element is moved from the upper array to the 
solution 



Counting inversions while merging 

1 4 11 12 2 3 7 15 

                

5 8 9 16 6 10 13 14 

                

Indicate the number of inversions for each element detected when merging 



Inversions 
Counting inversions between two sorted lists 

O(1) per element to count inversions 
 
 
 
 
 
 

 
 
Algorithm summary 

Satisfies the “Standard recurrence”  
T(n) = 2 T(n/2) + cn 

 x  x  x  x  x  x  x  x  y  y  y  y  y  y  y  y 

 z  z  z  z  z  z  z  z  z  z  z  z  z  z  z  z 



 A Divide & Conquer Example: 
Closest Pair of Points 
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closest pair of points: non-geometric version 

Given n points and arbitrary distances between them, 
find the closest pair.  (E.g., think of distance as airfare 
– definitely not Euclidean distance!)	



	


	


	



	


	



Must look at all n choose 2 pairwise distances, else ���
any one you didn’t check might be the shortest.  	



Also true for Euclidean distance in 1-2 dimensions?	



(… and all the rest of the (n) edges…)	

2	
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closest pair of points: 1 dimensional version 

Given n points on the real line, find the closest pair	


	


	



	


Closest pair is adjacent in ordered list	


Time O(n log n) to sort, if needed	



Plus O(n) to scan adjacent pairs	


Key point: do not need to calc distances between all 

pairs: exploit geometry + ordering	
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closest pair of points: 2 dimensional version 
Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.	



	



Fundamental geometric primitive.	


Graphics, computer vision, geographic information systems, molecular 
modeling, air traffic control.	



Special case of nearest neighbor, Euclidean MST, Voronoi.	


	


	



Brute force.  Check all pairs of points p and q with Θ(n2) comparisons.	


	



1-D version.  O(n log n) easy if points are on a line.	


	



Assumption.  No two points have same x coordinate.	



Just to simplify presentation	



fast closest pair inspired fast algorithms for these problems	
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closest pair of points. 2d, Euclidean distance:  1st try 

Divide.  Sub-divide region into 4 quadrants.	
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closest pair of points:  1st try 

Divide.  Sub-divide region into 4 quadrants.	


Obstacle.  Impossible to ensure n/4 points in 

each piece.	
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closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	
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L	





closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	
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12	



21	



L	





closest pair of points 

Algorithm.	


Divide: draw vertical line L with ≈ n/2 points on each side.	


Conquer:  find closest pair on each side, recursively.	



Combine:  find closest pair with one point in each side.	



Return best of 3 solutions.	
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12	



21	


8	



L	



seems ���
like ���
Θ(n2) ?	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	
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12	



21	



δ = min(12, 21)	



L	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	



49	



12	



21	



δ	



L	



δ = min(12, 21)	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	



Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate.	
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12	



21	



1	


2	



3	



4	

 5	


6	



7	



δ	



L	



δ = min(12, 21)	





closest pair of points 

Find closest pair with one point in each side, 
assuming distance < δ.	



Observation:  suffices to consider points within δ of line L.	



Almost the one-D problem again: Sort points in 2δ-strip by 
their y coordinate. Only check pts within 8 in sorted list!	
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12	



21	



1	


2	



3	



4	

 5	


6	



7	



δ	



L	



δ = min(12, 21)	





closest pair of points 

Def.  Let si have the ith smallest���
y-coordinate among points ���
in the 2δ-width-strip.	



Claim.  If |i – j| > 8, then the ���
distance between  si and sj ���
is > δ.	



Pf:  No two points lie in the ���
same ½δ-by-½δ box: ���
	


	



	

so ≤ 8 boxes within +δ of y(si). 	

 52	



δ	



29	


30	



31	



28	



26	



25	



δ	



½δ	



½δ	
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i	



j	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= ??) return ?? 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 



closest pair of points:  analysis 

Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	



	


	


	



	


BUT – that’s only the number of distance calculations	


	



What if we counted comparisons?	
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€ 

D(n) ≤
0 n =1

2D n /2( ) + 7n n >1
# 
$ 
% 

& 
' 
( 

⇒ D(n)  =  O(n logn)



closest pair of points:  analysis 
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€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

C(n) ≤
0 n =1

2C n / 2( ) + kn logn n >1

"
#
$

%$

&
'
$

($
⇒ C(n) = O(n log2 n)

for some constant k

Analysis, II:  Let C(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm when run 
on n ≥ 1 points	



	


	



	



	


Q.  Can we achieve O(n log n)?	



	


A.  Yes. Don't sort points from scratch each time.	



Sort by x at top level only.	



Each recursive call returns δ and list of all points sorted by y	


Sort by merging two pre-sorted lists.	





is it worth the effort? 

Code is longer & more complex	


O(n log n) vs O(n2) may hide 10x in constant?	


	


How many points?	
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n	


Speedup:���

n2 / (10 n log2 n)	



10	

 0	

.3	



100	

 1	

.5	



1,000	

 10	



10,000	

 75	



100,000	

 602	



1,000,000	

 5,017	



10,000,000	

 43,004	





Going From Code to Recurrence 
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going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let C(n) be the number of comparisons between sort keys 
used by MergeSort when sorting a list of length n ≥ 1”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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merge sort 

MS(A: array[1..n]) returns array[1..n] {	


If(n=1) return A;	


New L:array[1:n/2] = MS(A[1..n/2]);	


New R:array[1:n/2] = MS(A[n/2+1..n]);	


Return(Merge(L,R));	


}	



Merge(A,B: array[1..n]) {	


New C: array[1..2n];	


a=1; b=1;	


For i = 1 to 2n {	


	

C[i] = “smaller of A[a], B[b] and a++ or b++”;	



Return C;	


}	
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Recursive 
calls	



	



Base Case	



One���
Recursive	


Level	



Operations	


being 	


counted	





the recurrence 
	


	


	


	


	


	


	



	


	


Total time: proportional to C(n)	


  (loops, copying data, parameter passing, etc.)	
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€ 

C(n) =
0 if n =1
2C(n /2) + (n −1) if n >1
# 
$ 
% 

One compare per 
element added to 
merged list, except 
the last.	



Base case	



Recursive calls	





going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let D(n) be the number of pairwise distance calculations���
  in the Closest-Pair Algorithm when run on n ≥ 1 points”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

Recursive calls (2)	



Basic operations at 	


this recursive level	



Basic operations:	


distance calcs	



2D(n / 2)	



7n 	



0	

Base Case	



One ���
recursive ���

level	





Analysis, I:  Let D(n) be the number of pairwise distance 
calculations in the Closest-Pair Algorithm when run on n ≥ 1 
points	



	


	


	



	


BUT – that’s only the number of distance calculations	


	



What if we counted comparisons?	



closest pair of points:  analysis 
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€ 

D(n) ≤
0 n =1

2D n /2( ) + 7n n >1
# 
$ 
% 

& 
' 
( 

⇒ D(n)  =  O(n logn)



going from code to recurrence 

Carefully define what you’re counting, and write it 
down!	



“Let D(n) be the number of comparisons between 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points”	



In code, clearly separate base case from recursive case, 
highlight recursive calls, and operations being counted.	


Write Recurrence(s)	
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closest pair algorithm 
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Closest-Pair(p1, …, pn) { 
   if(n <= 1) return ∞ 
 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points p[1]…p[m] by y-coordinate. 
 
   for i = 1..m 
      k = 1 
      while i+k <= m && p[i+k].y < p[i].y + δ  
        δ = min(δ, distance between p[i] and p[i+k]); 
        k++; 
 
   return δ. 
} 

k1n log n	



2C(n / 2)	



k2n	



k3n log n	



7n	



Recursive calls (2)	



Basic operations at 	


this recursive level	



0	



1	



Basic operations:	


comparisons	



Base Case	



One ���
recursive ���

level	





closest pair of points:  analysis 
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€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

C(n) ≤
0 n =1

2C n / 2( ) + k4n logn n >1

"
#
$

%$

&
'
$

($
⇒ C(n) = O(n log2 n)

for some k4 ≤ k1 + k2 + k3 + 7

Analysis, II:  Let C(n) be the number of comparisons of 
coordinates/distances in the Closest-Pair Algorithm ���
when run on n ≥ 1 points	



	


	



	



	


Q.  Can we achieve time O(n log n)?	



	


A.  Yes. Don't sort points from scratch each time.	



Sort by x at top level only.	



Each recursive call returns δ and list of all points sorted by y	


Sort by merging two pre-sorted lists.	





Integer Multiplication 
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integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	



O(n) bit operations.	



	



Multiply.  Given two n-digit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	



Θ(n2) bit operations.	


69	



1	



0	

1	

1	

 1	



1	

1	

0	

 1	

+	



0	

1	

0	

 1	



1	

1	

1	



0	

1	

0	

 1	



0	

1	

1	

 1	



1	

0	

0	

 0	



1	

0	

1	

1	

1	



Add	



1	



1	



0	



0	



1	



1	



1	



0	



0	



1	



1	



1	



1	



0	



0	



1	



1	



1	



1	



0	



1	



0	



1	



0	

0	

0	

0	

0	

0	

0	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

1	

0	

1	

1	



1	



0	



1	



1	



1	



1	



1	



0	



*	



Multiply	



0	

0	

0	

0	

0	

0	

0	

0	





integer arithmetic 

Add.  Given two n-bit ���
integers a and b, ���
compute a + b.	



O(n) bit operations.	



	



Multiply.  Given two n-bit ���
integers a and b, ���
compute a × b. ���
The “grade school” method:  	



Θ(n2) bit operations.	
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1	



0	

1	

1	

 1	



1	

1	

0	

 1	

+	



0	

1	

0	

 1	



1	

1	

1	



0	

1	

0	

 1	



0	

1	

1	

 1	



1	

0	

0	

 0	



1	

0	

1	

1	

1	



Add	



1	



1	



0	



0	



1	



1	



1	



0	



0	



1	



1	



1	



1	



0	



0	



1	



1	



1	



1	



0	



1	



0	



1	



0	

0	

0	

0	

0	

0	

0	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

1	

0	

1	

0	

1	



1	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

1	

0	

1	

1	



1	



0	



1	



1	



1	



1	



1	



0	



*	



Multiply	



0	

0	

0	

0	

0	

0	

0	

0	





divide & conquer multiplication:  warmup 

To multiply two 2-digit integers:	


Multiply four 1-digit integers.	


Add, shift some 2-digit integers to obtain result.	



	


	


	



	


Same idea works for long integers –	


can split them into 4 half-sized ints	
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€ 

x = 10⋅ x1  +  x0
y = 10⋅ y1  +  y0

xy = 10⋅ x1 + x0( ) 10⋅ y1  + y0( )
= 100 ⋅ x1y1  + 10⋅ x1y0 + x0y1( ) + x0y0

5	



2	



4	



3	



0	

4	

4	

1	



0	

1	



8	

0	



5	

1	



2	

1	



x0⋅y0	



x0⋅y1	



x1⋅y0	



x1⋅y1	



x1  x0	



y1  y0	





divide & conquer multiplication:  warmup 

To multiply two n-bit integers:	


Multiply four ½n-bit integers.	


Add two ½n-bit integers, and shift to obtain result.	
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€ 

T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
    ⇒  T(n) =Θ(n2 )

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

assumes n is a power of 2	



1	



1	



0	



0	



1	



1	



0	



1	



1	



1	



0	



1	



1	



1	



1	



0	



1	

0	

0	

0	

0	

0	

0	

0	

0	

0	

0	

1	

0	

1	

1	

0	



*	



1	

0	

0	

0	

0	

0	

1	

0	



1	

0	

0	

1	

0	

1	

0	

1	



1	

1	

0	

0	

0	

1	

0	

0	



1	

1	

0	

1	

1	

0	

1	

0	



x0⋅y0	



x0⋅y1	



x1⋅y0	



x1⋅y1	



x1  x0	



y1  y0	





key trick: 2 multiplies for the price of 1: 
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€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( )
= 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0y1( ) + x0y0

€ 

α = x1  +  x0

β = y1  +  y0

αβ = x1 + x0( ) y1  + y0( )
= x1y1  + x1y0 + x0y1( ) + x0y0

x1y0 + x0y1( ) = αβ − x1y1 − x0y0

Well, ok, 4 for 3 is 
more accurate…	





Karatsuba multiplication 

To multiply two n-bit integers:	


Add two ½n bit integers.	



Multiply three ½n-bit integers.	



Add, subtract, and shift ½n-bit integers to obtain result.	



	



	


	



	


	


Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585) bit operations.	
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€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

  

€ 

T(n) ≤ T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

Sloppy version :  T(n) ≤ 3T(n /2) + O(n)

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A	

 B	

 C	

A	

 C	





Karatsuba multiplication 

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit 
integers in O(n1.585) bit operations.	
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€ 

T(n) ≤ T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

Sloppy version :  T(n) ≤ 3T(n /2) + O(n)

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )



multiplication – the bottom line 

Naïve: 	

 	

Θ(n2)	


Karatsuba: 	

Θ(n1.59…)	


Amusing exercise: generalize Karatsuba to do 5 size ���

n/3 subproblems → Θ(n1.46…)	


Best known: 	

Θ(n log n loglog n)	



"Fast Fourier Transform"	


but mostly unused in practice (unless you need really big 
numbers - a billion digits of π, say)	



High precision arithmetic IS important for crypto	
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Polynomial Multiplication 

77	
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Another D&C Example: Multiplying Polynomials	



Similar ideas apply to polynomial multiplication	


	



We’ll describe the basic ideas by multiplying 
polynomials rather than integers	


In fact, it’s somewhat simpler: no carries!	
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Notes on Polynomials	



These are just formal sequences of coefficients so 
when we show something multiplied by xk it just 
means shifted k places to the left – basically no 
work	


Usual ���
Polynomial ���
Multiplication:	


	


	

                   3x2 + 2x + 2!

                    x2 -  3x + 1!
                  3x2 + 2x + 2!
         -9x3 - 6x2 - 6x !
 3x4 + 2x3+ 2x2 !
 3x4 - 7x3  -   x2 - 4x + 2  !
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Polynomial Multiplication    	



Given:	


 Degree m-1 polynomials P and Q	



P  = a0 + a1 x + a2 x2 + … + am-2xm-2 + am-1xm-1	


Q = b0 + b1 x+ b2 x2 + … + bm-2xm-2 + bm-1xm-1

	



Compute:	


Degree 2m-2 Polynomial P Q	


P Q = a0b0 + (a0b1+a1b0) x + (a0b2+a1b1 +a2b0) x2 	

         
	

        +...+ (am-2bm-1+am-1bm-2) x2m-3 + am-1bm-1 x2m-2

	



Obvious Algorithm:	


Compute all aibj and collect terms 	


Θ (m2)  time	
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Naïve Divide and Conquer	



Assume m=2k	


P = (a0 + a1   x + a2 x2 + ... + ak-2 xk-2 + ak-1 xk-1) +                       ���
   (ak + ak+1 x +           ... + am-2xk-2 + am-1xk-1) xk                   ���

= P0 + P1 xk 	



Q = Q0 + Q1 xk	



	



P Q  = (P0+P1xk)(Q0+Q1xk)   	

 	

 	

 	

 	

���
    = P0Q0 + (P1Q0+P0Q1)xk + P1Q1x2k

	


	



4 sub-problems of size k=m/2 plus linear combining	


T(m)=4T(m/2)+cm	


Solution  T(m) = O(m2) 	
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Karatsuba’s Algorithm	



A better way to compute terms	


Compute 	



P0Q0	



P1Q1	



(P0+P1)(Q0+Q1)  which is P0Q0+P1Q0+P0Q1+P1Q1	



Then	


P0Q1+P1Q0 = (P0+P1)(Q0+Q1) - P0Q0 - P1Q1	



3 sub-problems of size m/2 plus O(m) work	


T(m) = 3 T(m/2) + cm	



T(m) = O(mα) where α = log23 = 1.585...	
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Karatsuba: Details	



PolyMul(P, Q):	


// P, Q are length m = 2k vectors, with P[i], Q[i] being���
// the coefficient of xi in polynomials P, Q respectively.	


if (m==1) return (P[0]*Q[0]);	


Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1	


Qzero, Qone : similar	


Prod1 = PolyMul(Pzero, Qzero); 	

// result is a (2k-1)-vector	


Prod2 = PolyMul(Pone, Qone);   	

// ditto	


Pzo = Pzero + Pone; 	

 	

 	

// add corresponding elements	


Qzo = Qzero + Qone;                  	

// ditto	


Prod3 = PolyMul(Pzo, Qzo);        	

// another (2k-1)-vector	


Mid = Prod3 – Prod1 – Prod2;     	

// subtract corr. elements	


R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector	


Return( R );	



Pzerp!Pone!
Qzero!Qone!

Prod1!
Mid!

Prod2!
R!

2m-2 !m !m/2 !0!

P = !
Q =!
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Multiplication – The Bottom Line	


Polynomials	



Naïve: 	

 	

Θ(n2)	


Karatsuba: 	

Θ(n1.585…)	


Best known: Θ(n log n)	



"Fast Fourier Transform"	



Integers	


Similar, but some ugly details re: carries, etc.  ���
gives Θ(n log n loglog n), 	



but mostly unused in practice	


	





 
Median and Selection 
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Computing the Median 

Median: Given n numbers, find the number 
of rank n/2  (to be precise, say:⎡n/2⎤) 

Selection: given n numbers and an integer 
k, find the k-th largest 
E.g., Median is ⎡n/2⎤-nd largest 



“order statistics” 

Can find max with n-1 comparisons	


Can find 2nd largest with another n-2	


3rd largest with another n-3	


etc.: kth largest in O(kn)	


	


What about k > log n?	


	


	


Can we do better?	
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Select(A, k){ 
 Choose x from A 
 S1 = {y in A | y < x} 
 S2 = {y in A | y = x} 
 S3 = {y in A | y > x} 
 if (|S1| ≥ k) 
  return Select(S1, k) 
 else if (|S1| + |S2| ≥ k) 
  return x 
 else 
  return Select(S3, k - |S1| - |S2|) 

} 

=x	



Select(A, k) 

S1	



S2	



S3	

S2	



S3	



S1	



< x	

 > x	





Randomized Selection 

Choose the element at random 
Analysis (not here) can show that the 

algorithm has expected run time O(n) 
Sketch: a random element eliminates, on 
average, ~ ½ of the data 

Although worst case is Θ(n2), albeit 
improbable (like Quicksort), for most 
purposes this is the method of choice 

Worst case matters?  Read on… 



Deterministic Selection 

What is the run time of select if we can 
guarantee that “choose” finds an x such 
that |S1| < 3n/4 and |S3| < 3n/4 



BFPRT Algorithm 

A very clever “choose” algorithm . . .  

Split into n/5 sets of size 5 
M be the set of medians of these sets 
Return x = the median of M 

M. Blum	

 R. Floyd	

 V. Pratt	

 R. Rivest	

 R. Tarjan	





BFPRT runtime 

Split into n/5 sets of size 5	


Let M be the set of medians of these sets	


Choose x to be the median of M	


Construct S1 , S2 and S3 as above	


Recursive call in S1 or S3	



	


To show: |S1| < 3n/4, |S3| < 3n/4	


	


n/5 + 3n/4 = 0.95n ⇒ O(n), worst case	


	





Median of Medians 
sm

al
l  

   
   

   
   

   
   

 la
rg

e	



x = median of medians	



NB: conceptual; algorithm finds median(s), but does not sort	





Median of Medians 

x = median of medians	



Points ≤ x, ∴ NOT in S3	


≈ 3n/10 of them	



Points ≥ x, ∴ NOT in S1	


≈ 3n/10 of them	



Bottom Line: 
recursive call on S1 
or S3 includes only 
about 70% of 
points	



sm
al

l  
   

   
   

   
   

   
 la

rg
e	



NB: conceptual; algorithm finds median(s), but does not sort	





BFPRT Recurrence 

≈ 7n/10 points in subproblem 
More precisely, various fussiness: 

⎡n/5⎤groups, all but (possibly) last of size 5 
Upper/lower half of ≥⎣⎡n/5⎤/2⎦groups excluded 
With some algebra, ∃a,b,c such that: 

T(n) ≤ T(7n/10+a) + T(n/5+b) + c n 



BFPRT Recurrence 

T(n) ≤ T(7n/10+a) + T(n/5+b) + c n 

Prove that T(n) <= 20 c n for n > 20(a+b) 



d & c summary 

Idea:	


“Two halves are better than a whole”	



if the base algorithm has super-linear complexity.	



“If a little's good, then more's better”	


repeat above, recursively	



Applications: Many.  	


Binary Search, Merge Sort, (Quicksort), Closest 
points, Integer multiply,…	
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Exponentiation 
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another d&c example: fast exponentiation 

Power(a,n)	


Input: integer n and number a	



Output: an	


	



Obvious algorithm	


n-1 multiplications	



	



Observation:	


if n is even, n = 2m, then an = am• am	
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divide & conquer algorithm 

Power(a,n)                                               	

 	

���
if n = 0 then return(1) 	


	

if n = 1 then return(a)                                                                                               
x ← Power(a,⎣n/2⎦) ���
x ← x•x	


	

if n is odd then	


	

 	

x ← a•x 	


	

return(x)	
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analysis 

Let M(n) be number of multiplies	



Worst-case ���
recurrence:	



By master theorem	



M(n) = O(log n) 	

(a=1, b=2, k=0)	



More precise analysis:	



M(n) = ⎣log2n⎦ + (# of 1’s in n’s binary representation) - 1	



Time is O(M(n)) if numbers < word size, else also 
depends on length, multiply algorithm	
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M (n) =
0 n ≤1

M n / 2"# $%( )+ 2 n >1

&
'
(

)(



a practical application - RSA 

Instead of an want an mod N	


ai+j mod N = ((ai mod N) • (aj mod N)) mod N	



same algorithm applies with each x • y replaced by  	


((x mod N) • (y mod N)) mod N	



	



In RSA cryptosystem (widely used for security)	


need an mod N where a, n, N each typically have 1024 bits	


Power: at most 2048 multiplies of 1024 bit numbers	



relatively easy for modern machines	



Naive algorithm:  21024 multiplies	



102	





d & c summary 

Idea:	


“Two halves are better than a whole”	



if the base algorithm has super-linear complexity.	



“If a little's good, then more's better”	


repeat above, recursively	



Analysis: recursion tree or Master Recurrence	


Applications: Many.  	



Binary Search, Merge Sort, (Quicksort), counting 
inversions, closest points, median, integer/ 
polynomial/matrix multiplication, FFT/convolution, 
exponentiation,…	
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