CSEP 521
 Applied Algorithms

Richard Anderson Winter 2013
Lecture 1

CSEP 521 Course Introduction

- CSEP 521, Applied Algorithms
- Monday's, 6:30-9:20 pm
- CSE 305 and Microsoft Building 99
- Instructor
- Richard Anderson, anderson@cs.washington.edu
- Office hours:
- CSE 582
- Monday, 4:00-5:00 pm or by appointment
- Teaching Assistant
- Tanvir Aumi, tanvir@cs.washington.edu
- Office hours:
- TBD

Announcements

- It's on the web.
- Homework due at start of class on Mondays
- HW 1, Due January 14, 2013
- It's on the web
http://www.cs.washington.edu/education/courses/csep521/13wi/

Text book

- Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 \& 2

- Expected coverage:
- Chapter 1 through 7

Recorded lectures

- This is a distance course, so lectures are recorded and will be available on line for later viewing
- However, low attendance in the distance PMP course is a concern
- Various draconian measures are under discussion
- We will make lectures available
- Please attend class, and participate
- Participation may be a component of the class grade

Lecture schedule

- Monday holidays:
- Monday, January 21, MLK
- Monday, February 18, President's day
- Make up lectures will be scheduled, which will be recorded for offline viewing
- Hopefully, some students will attend, so there is a studio audience
- First makeup lecture:
- Thursday, January 17, 5:00-6:30 pm
- Additional makeup lectures to accommodate RJA's travel schedule

Course Mechanics

- Homework
- Due Mondays
- Textbook problems and programming exercises
- Choice of language
- Expectation that Algorithmic Code is original
- Target: 1 week turnaround on grading
- Late Policy: Two assignments may be turned in up to one week late
- Exams (In class, tentative)
- Midterm, Monday, Feb 11 (60 minutes)
- Final, Monday, March 18, 6:30-8:20 pm
- Approximate grade weighting
- HW: 50, MT: 15, Final: 35

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
- Where algorithms apply
- What makes an algorithm work
- Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

Example (1 of 3)

$\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
 $m_{2}: w_{2} w_{1}$
 $w_{1}: m_{1} m_{2}$
 $\mathrm{w}_{2}: \mathrm{m}_{2} \mathrm{~m}_{1}$

○W
$\mathrm{m}_{2} \bigcirc$
W_{2}

Example (2 of 3)

$\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
$\mathrm{m}_{2}: \mathrm{w}_{1} \mathrm{w}_{2}$
$w_{1}: m_{1} m_{2}$
$w_{2}: m_{1} m_{2}$

$\mathrm{m}_{1} \bigcirc$

OW
$\mathrm{m}_{2} \bigcirc$
W_{2}

Example (3 of 3)

$\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
$\mathrm{m}_{2}: \mathrm{w}_{2} \mathrm{w}_{1}$
$w_{1}: m_{2} m_{1}$
$w_{2}: m_{1} m_{2}$

OW
$\mathrm{m}_{2} \bigcirc$
W_{2}

Formal Problem

- Input
- Preference lists for $m_{1}, m_{2}, \ldots, m_{n}$
- Preference lists for $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$
- Output
- Perfect matching M satisfying stability property:
If $\left(m^{\prime}, w^{\prime}\right) \in M$ and $\left(m^{\prime \prime}, w^{\prime \prime}\right) \in M$ then
(m ' prefers w^{\prime} to $w^{\prime \prime}$) or ($w^{\prime \prime}$ prefers $m^{\prime \prime}$ to m^{\prime})

Idea for an Algorithm

m proposes to w
If w is unmatched, w accepts
If w is matched to m_{2}
If w prefers m to $m_{2} w$ accepts m, dumping m_{2}
If w prefers m_{2} to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose ($\left.m_{2}, w\right)$ is matched
if w prefers m to m_{2} unmatch $\left(m_{2}, w\right)$ match (m, w)

Example

$\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$
$\mathrm{m}_{2}: \mathrm{w}_{1} \mathrm{~W}_{3} \mathrm{~W}_{2}$
$m_{3}: w_{1} w_{2} W_{3}$
$\mathrm{m}_{2} \bigcirc$
W_{2}
$w_{1}: m_{2} m_{3} m_{1}$
$\mathrm{w}_{2}: \mathrm{m}_{3} \mathrm{~m}_{1} \mathrm{~m}_{2}$
$w_{3}: m_{3} m_{1} m_{2}$
$\bigcirc W_{1}$
$\mathrm{m}_{1} \bigcirc$
號

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse (have higher m-rank)
- Once w is matched, w stays matched
- w's partners get better (have lower w-rank)

Claim: The algorithm stops in at most n^{2} steps

When the algorithms halts, every w

 is matchedWhy?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose
$\left(m_{1}, w_{1}\right) \in M,\left(m_{2}, w_{2}\right) \in M$ m_{1} prefers w_{2} to w_{1}

How could this happen?

Result

- Simple, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm to compute a stable matching
- Corollary
- A stable matching always exists

A closer look

Stable matchings are not necessarily fair

$$
\begin{array}{llll}
\mathrm{m}_{1}: & \mathrm{w}_{1} & \mathrm{w}_{2} & \mathrm{w}_{3} \\
\mathrm{~m}_{2}: & \mathrm{w}_{2} & \mathrm{w}_{3} & \mathrm{w}_{1} \\
\mathrm{~m}_{3}: & \mathrm{w}_{3} & \mathrm{w}_{1} & \mathrm{w}_{2} \\
& & & \\
& & & \\
\mathrm{w}_{1}: & \mathrm{m}_{2} & \mathrm{~m}_{3} & \mathrm{~m}_{1} \\
\mathrm{w}_{2}: & \mathrm{m}_{3} & \mathrm{~m}_{1} & \mathrm{~m}_{2} \\
\mathrm{w}_{3}: & \mathrm{m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3}
\end{array}
$$

How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- Proving this type of result
- Reordering argument
- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:
(m, w) is valid if (m, w) is in some stable matching
best(m): the highest ranked w for m such that (m, w) is valid
$S^{*}=\{(\mathrm{m}$, best $(\mathrm{m})\}$
Every execution of the proposal algorithm computes S^{*}

Proof

See the text book - pages 9-12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm
Proposal algorithms where w's propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for m_{1} : problem of size 4:

M proposal algorithm:
All m's get first choice, all w's $m_{3}:$ get last choice
W proposal algorithm:
All w's get first choice, all m's get last choice

$$
w_{1}:
$$

W_{2} :
W_{3} :
W_{4} :

But there is a stable second choice

Design a configuration for m_{1} : problem of size 4:

M proposal algorithm:
All m's get first choice, all w's get last choice
W proposal algorithm:
All w's get first choice, all m's get last choice
There is a stable matching where everyone gets their second choice

$$
m_{2}
$$

m_{3} :
m_{4} :
w_{1} :
W_{2} :
W_{3} :
W_{4} :

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w , what is the expected M -rank?

Random Preferences

Suppose that the preferences are completely random

$$
\begin{aligned}
& \mathrm{m}_{1}: \mathrm{w}_{8} \mathrm{w}_{3} \mathrm{w}_{1} \mathrm{w}_{5} \mathrm{w}_{9} \mathrm{w}_{2} \mathrm{w}_{4} \mathrm{w}_{6} \mathrm{w}_{7} \mathrm{w}_{10} \\
& \mathrm{~m}_{2}: \mathrm{w}_{7} \mathrm{w}_{10} \mathrm{w}_{1} \mathrm{w}_{9} \mathrm{w}_{3} \mathrm{w}_{4} \mathrm{w}_{8} \mathrm{w}_{2} \mathrm{w}_{5} \mathrm{w}_{6} \\
& \ldots \\
& \mathrm{w}_{1}: \mathrm{m}_{1} \mathrm{~m}_{4} \mathrm{~m}_{9} \mathrm{~m}_{5} \mathrm{~m}_{10} \mathrm{~m}_{3} \mathrm{~m}_{2} \mathrm{~m}_{6} \mathrm{~m}_{8} \mathrm{~m}_{7} \\
& \mathrm{w}_{2}: \mathrm{m}_{5} \mathrm{~m}_{8} \mathrm{~m}_{1} \mathrm{~m}_{3} \mathrm{~m}_{2} \mathrm{~m}_{7} \mathrm{~m}_{9} \mathrm{~m}_{10} \mathrm{~m}_{4} \mathrm{~m}_{6}
\end{aligned}
$$

If there are n m's and n w's, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m
Executed at most n^{2} times w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2} unmatch $\left(m_{2}, w\right)$ match (m, w)

$\mathrm{O}(1)$ time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_{2}
- Test if w prefers m to m_{2}
- Update matching

What does it mean for an algorithm to be efficient?

Key ideas

- Formalizing real world problem
- Model: graph and preference lists
- Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

Five Problems

Theory of Algorithms

- What is expertise?
- How do experts differ from novices?

Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Facility Location

What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall: $\left(s_{1}, f_{1}\right),\left(s_{2}, f_{2}\right), \ldots$

- Find a set of requests as large as possible with no overlap

What is the largest solution?

Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works

Suppose we add values?

- $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$, start time, finish time, payment
- Maximize value of elements in the solution

Greedy Algorithms

- Earliest finish time
- Maximum value
- Give counter examples to show these algorithms don't find the maximum value solution

Dynamic Programming

- Requests $R_{1}, R_{2}, R_{3}, \ldots$
- Assume requests are in increasing order of finish time ($\mathrm{f}_{1}<\mathrm{f}_{2}<\mathrm{f}_{3} \ldots$)
- Opt is the maximum value solution of $\left\{R_{1}, R_{2}, \ldots, R_{i}\right\}$ containing R_{i}
- Opt $_{\mathrm{i}}=\operatorname{Max}\left\{\mathrm{j} \mid \mathrm{f}_{\mathrm{j}}<\mathrm{s}_{\mathrm{i}}\right\}\left[\mathrm{Opt}_{\mathrm{j}}+\mathrm{v}_{\mathrm{i}}\right]$

Matching

- Given a bipartite graph $G=(\mathrm{U}, \mathrm{V}, \mathrm{E})$, find a subset of the edges M of maximum size with no common endpoints.
- Application:
- U: Professors
- V: Courses
- (u,v) in E if Prof. u can
 teach course v

Find a maximum matching

Augmenting Path Algorithm

Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem

Maximum Independent Set

- Given an undirected graph $G=(V, E)$, find a set I of vertices such that there are no edges between vertices of I
- Find a set I as large as possible

Find a Maximum Independent Set

Verification: Prove the graph has an independent set of size 10

Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
- Hamiltonian circuit
- Clique
- Subset sum
- Graph coloring

NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory

Are there even harder problems?

- Simple game:
- Players alternating selecting nodes in a graph
- Score points associated with node
- Remove nodes neighbors
- When neither can move, player with most points wins

Competitive Facility Location

- Choose location for a facility
- Value associated with placement
- Restriction on placing facilities too close together
- Competitive
- Different companies place facilities
- E.g., KFC and McDonald's

Complexity theory

- These problems are P-Space complete instead of NP-Complete
- Appear to be much harder
- No obvious certificate
- G has a Maximum Independent Set of size 10
- Player 1 wins by at least 10 points

An NP-Complete problem from Digital Public Health

- ASHAs use Pico projectors to show health videos to Mothers' groups
- Limited number of Pico projectors, so ASHAs must travel to where the Pico projector is stored
- Identify storage locations
 for k Pico projectors to minimize the maximum distance an ASHA must travel

Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling

