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CSEP 521 

Applied Algorithms 

Richard Anderson 

Winter 2013 

Lecture 2 

Announcements 

• Reading 

– Chapter 2.1, 2.2 

– Chapter 3  

– Chapter 4 

• Homework Guidelines 

– Prove that your algorithm works 
• A proof is a “convincing argument” 

– Give the run time for you algorithm 
• Justify that the algorithm satisfies the runtime bound 

– You may lose points for style 

Announcements 

• Monday, January 21 is a holiday 

– No class 

• Makeup lecture,  Thursday, January 17, 

5:00 pm – 6:30 pm 

– UW and Microsoft 

– View off line if you cannot attend 

• Homework 2 is due January 21 

– Electronic turn in only 

 

What does it mean for an algorithm 

to be efficient? 

  

 

Definitions of efficiency 

• Fast in practice 

 

• Qualitatively better worst case 

performance than a brute force algorithm 

Polynomial time efficiency 

• An algorithm is efficient if it has a 

polynomial run time 

• Run time as a function of problem size 

– Run time: count number of instructions 

executed on an underlying model of 

computation 

– T(n): maximum run time for all problems of 

size at most n 
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Polynomial Time 

• Algorithms with polynomial run time have 

the property that increasing the problem 

size by a constant factor increases the run 

time by at most a constant factor 

(depending on the algorithm) 

 

Why Polynomial Time? 

• Generally, polynomial time seems to 

capture the algorithms which are efficient 

in practice 

 

• The class of polynomial time algorithms 

has many good, mathematical properties 

Polynomial vs. Exponential 

Complexity 

• Suppose you have an algorithm which takes n! 

steps on a problem of size n 

• If the algorithm takes one second for a problem 

of size 10, estimate the run time for the following 

problems sizes: 

 
12             14              16               18             20 

Ignoring constant factors 

• Express run time as O(f(n)) 

• Emphasize algorithms with slower growth 

rates 

• Fundamental idea in the study of 

algorithms 

• Basis of Tarjan/Hopcroft Turing Award 

Why ignore constant factors? 

• Constant factors are arbitrary 

– Depend on the implementation 

– Depend on the details of the model 

 

• Determining the constant factors is tedious 

and provides little insight 

Why emphasize growth rates? 

• The algorithm with the lower growth rate 
will be faster for all but a finite number of 
cases 

• Performance is most important for larger 
problem size 

• As memory prices continue to fall, bigger 
problem sizes become feasible 

• Improving growth rate often requires new 
techniques 
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Formalizing growth rates 

• T(n) is O(f(n))               [T : Z+   R+] 

– If n is sufficiently large, T(n) is bounded by a 

constant multiple of f(n) 

– Exist c, n0, such that for n > n0, T(n) < c f(n) 

 

• T(n) is O(f(n)) will be written as:              

T(n) = O(f(n)) 

– Be careful with this notation 

Prove 3n2 + 5n + 20 is O(n2) 

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,         

T(n) < c f(n) 

Let c =  

 

Let n0 =  

Order the following functions in 

increasing order by their growth rate 

a) n log4n 

b) 2n2 + 10n 

c) 2n/100 

d) 1000n + log8 n 

e) n100 

f) 3n 

g) 1000 log10n 

h) n1/2 

Lower bounds 

• T(n) is W(f(n)) 

– T(n) is at least a constant multiple of f(n) 

– There exists an n0, and e > 0 such that       

T(n) > ef(n) for all n > n0 

• Warning: definitions of W vary 

 

• T(n) is Q(f(n)) if T(n) is O(f(n)) and         

T(n) is W(f(n)) 

Useful Theorems 

• If lim (f(n) / g(n)) = c for c > 0 then           

f(n) = Q(g(n)) 

 

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     

f(n) is O(h(n)) 

 

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 

f(n) + g(n) is O(h(n)) 

Ordering growth rates 

• For b > 1 and x > 0 

– logbn is O(nx) 

 

• For r > 1 and d > 0 

– nd is O(rn) 
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Stable Matching 

Reported Results 

Student n M / n W / n M / n * W / n 

Stanislav 10,000   9.96 1020 10159 

Andy   4,096   8.77   472   4139 

Boris   5,000 10.06   499   5020 

Huy 10,000 10.68   969 10349 

Hans 10,000   9.59 1046 10031 

Vijayanand   1,000   8.60   114     980 

Robert 20,000 12.40 1698 21055 

Zain   2,825   8.61   331   2850 

Uzair   8,192   9.10   883   8035 

Anand 10,000   9.58 1045 10011 

Why is M/n ~ log n? 

 

Why is W/n ~ n / log n? 

 

Graph Theory 

Graph Theory 

• G = (V, E) 
– V – vertices 

– E – edges  

• Undirected graphs 
– Edges sets of two vertices {u, v} 

• Directed graphs 
– Edges ordered pairs (u, v) 

• Many other flavors 
– Edge / vertices weights 

– Parallel edges 

– Self loops 
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Definitions 

• Path:  v1, v2, …, vk, with (vi, vi+1) in E 
– Simple Path 

– Cycle 

– Simple Cycle 

• Distance 

• Connectivity 
– Undirected 

– Directed (strong connectivity) 

• Trees 
– Rooted 

– Unrooted 

Graph search 

• Find a path from s to t 

S = {s} 

While there exists (u, v) in E with u in S and v not in S 

 Pred[v] = u 

 Add v to S 

 if (v = t) then path found 

Breadth first search 

• Explore vertices in layers 

– s in layer 1 

– Neighbors of s in layer 2 

– Neighbors of layer 2 in layer 3 . . . 

s 

Key observation 

• All edges go between vertices on the 

same layer or adjacent layers 

2 

8 

3 

7 6 5 4 

1 

Bipartite Graphs 

• A graph V is bipartite if V can be 

partitioned into V1, V2 such that all edges 

go between V1 and V2 

• A graph is bipartite if it can be two colored 

Can this graph be two colored? 
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Algorithm 

• Run BFS 

• Color odd layers red, even layers blue 

• If no edges between the same layer, the 

graph is bipartite 

• If edge between two vertices of the same 

layer, then there is an odd cycle, and the 

graph is not bipartite 

Theorem: A graph is bipartite if and 

only if it has no odd cycles 

Lemma 1 

• If a graph contains an odd cycle, it is not 

bipartite 

Lemma 2 

• If a BFS tree has an intra-level edge, then 

the graph has an odd length cycle 

Intra-level edge: both end points are in the same level 

Lemma 3 

• If a graph has no odd length cycles, then it 

is bipartite 

Connected Components 

• Undirected Graphs 
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Computing Connected 

Components in O(n+m) time 

• A search algorithm from a vertex v can find 

all vertices in v’s component 

• While there is an unvisited vertex v, search 

from v to find a new component 

 

Directed Graphs 

• A Strongly Connected Component is a 

subset of the vertices with paths between 

every pair of vertices. 

Identify the Strongly Connected 

Components 

 

Strongly connected components 

can be found in O(n+m) time 

• But it’s tricky! 

• Simpler problem: given a vertex v, compute the 

vertices in v’s scc in O(n+m) time 

Topological Sort 

• Given a set of tasks with precedence 

constraints, find a linear order of the tasks 

142 143 

321 

341 

370 378 

326 

322 401 

421 

431 

Find a topological order for the 

following graph 

E 

F 

D 

A 

C 

B 

K 

J 
G 

H 
I 

L 
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If a graph has a cycle, there is no 

topological sort 

• Consider the first 

vertex on the cycle in 

the topological sort 

• It must have an 

incoming edge B 

A 

D 

E 

F 

C 

Lemma: If a graph is acyclic, it has 

a vertex with in degree 0 

• Proof:   

– Pick a vertex v1, if it has in-degree 0 then 

done 

– If not, let (v2, v1) be an edge, if v2 has in-

degree 0 then done 

– If not, let (v3, v2) be an edge . . . 

– If this process continues for more than n 

steps, we have a repeated vertex, so we have 

a cycle 

Topological Sort Algorithm 

While there exists a vertex v with in-degree 0 

 Output vertex v 

 Delete the vertex v and all out going edges 

E 

F 

D 

A 

C 

B 

K 

J 
G 

H 
I 

L 

Details for O(n+m) implementation 

• Maintain a list of vertices of in-degree 0 

• Each vertex keeps track of its in-degree 

• Update in-degrees and list when edges 

are removed 

• m edge removals at O(1) cost each 

 

Random Graph models 

 

Question: 

What is the cycle structure as N gets 

large? 

How many cycles? 

What is the cycle length? 

Random out degree one graph 
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Greedy Algorithms 

Greedy Algorithms 

• Solve problems with the simplest possible 

algorithm 

• The hard part: showing that something 

simple actually works 

• Pseudo-definition 

– An algorithm is Greedy if it builds its solution 

by adding elements one at a time using a 

simple rule 

Scheduling Theory 

• Tasks 

– Processing requirements, release times, 

deadlines 

• Processors 

• Precedence constraints 

• Objective function 

– Jobs scheduled, lateness, total execution time 

• Tasks occur at fixed times 

• Single processor 

• Maximize number of tasks completed 

 

 

• Tasks {1, 2, . . . N} 

• Start and finish times, s(i), f(i)   

Interval Scheduling 

What is the largest solution? Greedy Algorithm for Scheduling 

Let T be the set of tasks, construct a set of independent tasks I, A 

is the rule determining the greedy algorithm 

 

I = { } 

While (T is not empty) 

 Select a task t from T by a rule A 

 Add t to I 

 Remove t and all tasks incompatible with t from T 
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Simulate the greedy algorithm for 

each of these heuristics 

Schedule earliest starting task 

Schedule shortest available task 

Schedule task with fewest conflicting tasks 

Greedy solution based on earliest 

finishing time 

Example 1 

Example 2 

Example 3 

Theorem: Earliest Finish Algorithm 

is Optimal 

• Key idea: Earliest Finish Algorithm stays 

ahead 

• Let A = {i1, . . ., ik} be the set of tasks found 

by EFA in increasing order of finish times 

• Let B = {j1, . . ., jm} be the set of tasks 

found by a different algorithm in increasing 

order of finish times 

• Show that for r<= min(k, m), f(ir) <= f(jr) 

 

Stay ahead lemma 

• A always stays ahead of B, f(ir) <= f(jr) 

• Induction argument 

– f(i1) <= f(j1) 

– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr) 

Completing the proof 

• Let A = {i1, . . ., ik} be the set of tasks found by 
EFA in increasing order of finish times 

• Let O = {j1, . . ., jm} be the set of tasks found by 
an optimal algorithm in increasing order of finish 
times 

• If k < m, then the Earliest Finish Algorithm 
stopped before it ran out of tasks 

 

Scheduling all intervals 

• Minimize number of processors to 

schedule all intervals 
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How many processors are needed 

for this example? 
Prove that you cannot schedule this set 

of intervals with two processors 

Depth: maximum number of 

intervals active  
Algorithm 

• Sort by start times 

• Suppose maximum depth is d, create d 

slots 

• Schedule items in increasing order, assign 

each item to an open slot 

 

• Correctness proof: When we reach an 

item, we always have an open slot 

Scheduling tasks 

• Each task has a length ti and a deadline di 

• All tasks are available at the start 

• One task may be worked on at a time 

• All tasks must be completed 

 

• Goal minimize maximum lateness 

– Lateness = fi – di if fi >= di 

Example 

2 

3 

2 

4 

Deadline Time 

2 3 

2 3 

Lateness 1 

Lateness 3 
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Determine the minimum lateness 

2 

3 

4 

5 

6 

4 

5 

12 

Deadline Time 

Greedy Algorithm 

• Earliest deadline first 

• Order jobs by deadline 

 

• This algorithm is optimal 

Analysis 

• Suppose the jobs are ordered by deadlines,     

d1 <= d2 <= . . . <= dn 

• A schedule has an inversion if job j is scheduled 

before i where j > i 

 

• The schedule A computed by the greedy 

algorithm has no inversions. 

• Let O be the optimal schedule, we want to show 

that A has the same maximum lateness as O 

List the inversions 

2 

3 

4 

5 

4 

5 

6 

12 

Deadline Time 

a1 

a2 

a3 

a4 

a4 a2 a3 a1 

Lemma: There is an optimal 

schedule with no idle time 

• It doesn’t hurt to start your homework early! 

 

• Note on proof techniques 

– This type of can be important for keeping proofs clean 

– It allows us to make a simplifying assumption for the 

remainder of the proof 

a4 a2 a3 a1 

Lemma 

• If there is an inversion i, j, there is a pair of 

adjacent jobs i’, j’ which form an inversion 
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Interchange argument 

• Suppose there is a pair of jobs i and j, with  

di <= dj,  and j scheduled immediately 

before i.  Interchanging i and j does not 

increase the maximum lateness.   

di  dj di  dj 

j i j i 

Proof by Bubble Sort 

a4 a2 a3 a1 

a4 a2 a3 

a4 a2 a3 a1 

a4 a2 a3 a1 

a1 

a4 a2 a3 a1 

Determine maximum lateness 

d1 d2 d3 d4 

Real Proof 

• There is an optimal schedule with no 
inversions and no idle time. 

• Let O be an optimal schedule k inversions, 
we construct a new optimal schedule with 
k-1 inversions 

• Repeat until we have an optimal schedule 
with 0 inversions 

• This is the solution found by the earliest 
deadline first algorithm 

Result 

• Earliest Deadline First algorithm 

constructs a schedule that minimizes the 

maximum lateness 

 

Homework Scheduling 

• How is the model unrealistic? 

Extensions 

• What if the objective is to minimize the 
sum of the lateness? 

– EDF does not seem to work 

• If the tasks have release times and 
deadlines, and are non-preemptable, the 
problem is NP-complete 

• What about the case with release times 
and deadlines where tasks are 
preemptable? 


