
1/14/2013

1

CSEP 521

Applied Algorithms

Richard Anderson

Winter 2013

Lecture 2

Announcements

• Reading

– Chapter 2.1, 2.2

– Chapter 3

– Chapter 4

• Homework Guidelines

– Prove that your algorithm works
• A proof is a “convincing argument”

– Give the run time for you algorithm
• Justify that the algorithm satisfies the runtime bound

– You may lose points for style

Announcements

• Monday, January 21 is a holiday

– No class

• Makeup lecture, Thursday, January 17,

5:00 pm – 6:30 pm

– UW and Microsoft

– View off line if you cannot attend

• Homework 2 is due January 21

– Electronic turn in only

What does it mean for an algorithm

to be efficient?

Definitions of efficiency

• Fast in practice

• Qualitatively better worst case

performance than a brute force algorithm

Polynomial time efficiency

• An algorithm is efficient if it has a

polynomial run time

• Run time as a function of problem size

– Run time: count number of instructions

executed on an underlying model of

computation

– T(n): maximum run time for all problems of

size at most n

1/14/2013

2

Polynomial Time

• Algorithms with polynomial run time have

the property that increasing the problem

size by a constant factor increases the run

time by at most a constant factor

(depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to

capture the algorithms which are efficient

in practice

• The class of polynomial time algorithms

has many good, mathematical properties

Polynomial vs. Exponential

Complexity

• Suppose you have an algorithm which takes n!

steps on a problem of size n

• If the algorithm takes one second for a problem

of size 10, estimate the run time for the following

problems sizes:

12 14 16 18 20

Ignoring constant factors

• Express run time as O(f(n))

• Emphasize algorithms with slower growth

rates

• Fundamental idea in the study of

algorithms

• Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

• Constant factors are arbitrary

– Depend on the implementation

– Depend on the details of the model

• Determining the constant factors is tedious

and provides little insight

Why emphasize growth rates?

• The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

• Performance is most important for larger
problem size

• As memory prices continue to fall, bigger
problem sizes become feasible

• Improving growth rate often requires new
techniques

1/14/2013

3

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ R+]

– If n is sufficiently large, T(n) is bounded by a

constant multiple of f(n)

– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:

T(n) = O(f(n))

– Be careful with this notation

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,

T(n) < c f(n)

Let c =

Let n0 =

Order the following functions in

increasing order by their growth rate

a) n log4n

b) 2n2 + 10n

c) 2n/100

d) 1000n + log8 n

e) n100

f) 3n

g) 1000 log10n

h) n1/2

Lower bounds

• T(n) is W(f(n))

– T(n) is at least a constant multiple of f(n)

– There exists an n0, and e > 0 such that

T(n) > ef(n) for all n > n0

• Warning: definitions of W vary

• T(n) is Q(f(n)) if T(n) is O(f(n)) and

T(n) is W(f(n))

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then

f(n) = Q(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then

f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then

f(n) + g(n) is O(h(n))

Ordering growth rates

• For b > 1 and x > 0

– logbn is O(nx)

• For r > 1 and d > 0

– nd is O(rn)

1/14/2013

4

Stable Matching

Reported Results

Student n M / n W / n M / n * W / n

Stanislav 10,000 9.96 1020 10159

Andy 4,096 8.77 472 4139

Boris 5,000 10.06 499 5020

Huy 10,000 10.68 969 10349

Hans 10,000 9.59 1046 10031

Vijayanand 1,000 8.60 114 980

Robert 20,000 12.40 1698 21055

Zain 2,825 8.61 331 2850

Uzair 8,192 9.10 883 8035

Anand 10,000 9.58 1045 10011

Why is M/n ~ log n?

Why is W/n ~ n / log n?

Graph Theory

Graph Theory

• G = (V, E)
– V – vertices

– E – edges

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights

– Parallel edges

– Self loops

1/14/2013

5

Definitions

• Path: v1, v2, …, vk, with (vi, vi+1) in E
– Simple Path

– Cycle

– Simple Cycle

• Distance

• Connectivity
– Undirected

– Directed (strong connectivity)

• Trees
– Rooted

– Unrooted

Graph search

• Find a path from s to t

S = {s}

While there exists (u, v) in E with u in S and v not in S

 Pred[v] = u

 Add v to S

 if (v = t) then path found

Breadth first search

• Explore vertices in layers

– s in layer 1

– Neighbors of s in layer 2

– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the

same layer or adjacent layers

2

8

3

7 6 5 4

1

Bipartite Graphs

• A graph V is bipartite if V can be

partitioned into V1, V2 such that all edges

go between V1 and V2

• A graph is bipartite if it can be two colored

Can this graph be two colored?

1/14/2013

6

Algorithm

• Run BFS

• Color odd layers red, even layers blue

• If no edges between the same layer, the

graph is bipartite

• If edge between two vertices of the same

layer, then there is an odd cycle, and the

graph is not bipartite

Theorem: A graph is bipartite if and

only if it has no odd cycles

Lemma 1

• If a graph contains an odd cycle, it is not

bipartite

Lemma 2

• If a BFS tree has an intra-level edge, then

the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it

is bipartite

Connected Components

• Undirected Graphs

1/14/2013

7

Computing Connected

Components in O(n+m) time

• A search algorithm from a vertex v can find

all vertices in v’s component

• While there is an unvisited vertex v, search

from v to find a new component

Directed Graphs

• A Strongly Connected Component is a

subset of the vertices with paths between

every pair of vertices.

Identify the Strongly Connected

Components

Strongly connected components

can be found in O(n+m) time

• But it’s tricky!

• Simpler problem: given a vertex v, compute the

vertices in v’s scc in O(n+m) time

Topological Sort

• Given a set of tasks with precedence

constraints, find a linear order of the tasks

142 143

321

341

370 378

326

322 401

421

431

Find a topological order for the

following graph

E

F

D

A

C

B

K

J
G

H
I

L

1/14/2013

8

If a graph has a cycle, there is no

topological sort

• Consider the first

vertex on the cycle in

the topological sort

• It must have an

incoming edge B

A

D

E

F

C

Lemma: If a graph is acyclic, it has

a vertex with in degree 0

• Proof:

– Pick a vertex v1, if it has in-degree 0 then

done

– If not, let (v2, v1) be an edge, if v2 has in-

degree 0 then done

– If not, let (v3, v2) be an edge . . .

– If this process continues for more than n

steps, we have a repeated vertex, so we have

a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0

 Output vertex v

 Delete the vertex v and all out going edges

E

F

D

A

C

B

K

J
G

H
I

L

Details for O(n+m) implementation

• Maintain a list of vertices of in-degree 0

• Each vertex keeps track of its in-degree

• Update in-degrees and list when edges

are removed

• m edge removals at O(1) cost each

Random Graph models

Question:

What is the cycle structure as N gets

large?

How many cycles?

What is the cycle length?

Random out degree one graph

1/14/2013

9

Greedy Algorithms

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Pseudo-definition

– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a

simple rule

Scheduling Theory

• Tasks

– Processing requirements, release times,

deadlines

• Processors

• Precedence constraints

• Objective function

– Jobs scheduled, lateness, total execution time

• Tasks occur at fixed times

• Single processor

• Maximize number of tasks completed

• Tasks {1, 2, . . . N}

• Start and finish times, s(i), f(i)

Interval Scheduling

What is the largest solution? Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A

is the rule determining the greedy algorithm

I = { }

While (T is not empty)

 Select a task t from T by a rule A

 Add t to I

 Remove t and all tasks incompatible with t from T

1/14/2013

10

Simulate the greedy algorithm for

each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest

finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm

is Optimal

• Key idea: Earliest Finish Algorithm stays

ahead

• Let A = {i1, . . ., ik} be the set of tasks found

by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks

found by a different algorithm in increasing

order of finish times

• Show that for r<= min(k, m), f(ir) <= f(jr)

Stay ahead lemma

• A always stays ahead of B, f(ir) <= f(jr)

• Induction argument

– f(i1) <= f(j1)

– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr)

Completing the proof

• Let A = {i1, . . ., ik} be the set of tasks found by
EFA in increasing order of finish times

• Let O = {j1, . . ., jm} be the set of tasks found by
an optimal algorithm in increasing order of finish
times

• If k < m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

Scheduling all intervals

• Minimize number of processors to

schedule all intervals

1/14/2013

11

How many processors are needed

for this example?
Prove that you cannot schedule this set

of intervals with two processors

Depth: maximum number of

intervals active
Algorithm

• Sort by start times

• Suppose maximum depth is d, create d

slots

• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an

item, we always have an open slot

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness = fi – di if fi >= di

Example

2

3

2

4

Deadline Time

2 3

2 3

Lateness 1

Lateness 3

1/14/2013

12

Determine the minimum lateness

2

3

4

5

6

4

5

12

Deadline Time

Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,

d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled

before i where j > i

• The schedule A computed by the greedy

algorithm has no inversions.

• Let O be the optimal schedule, we want to show

that A has the same maximum lateness as O

List the inversions

2

3

4

5

4

5

6

12

Deadline Time

a1

a2

a3

a4

a4 a2 a3 a1

Lemma: There is an optimal

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of

adjacent jobs i’, j’ which form an inversion

1/14/2013

13

Interchange argument

• Suppose there is a pair of jobs i and j, with

di <= dj, and j scheduled immediately

before i. Interchanging i and j does not

increase the maximum lateness.

di dj di dj

j i j i

Proof by Bubble Sort

a4 a2 a3 a1

a4 a2 a3

a4 a2 a3 a1

a4 a2 a3 a1

a1

a4 a2 a3 a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

Result

• Earliest Deadline First algorithm

constructs a schedule that minimizes the

maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the
sum of the lateness?

– EDF does not seem to work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

