CSEP 521
 Applied Algorithms

Richard Anderson Winter 2013 Lecture 3

Announcements

- Reading
- For today, sections 4.1, 4.2, 4.4
- For January 28, sections 4.5, 4.7, 4.8 (Plus additional material from chapter 5)
- No class January 21
- Homework 2 is due January 21

Highlights from last lecture

- Algorithm runtime
- Runtime as a function of problem size
- Asymptotic analysis, (Big Oh notation)
- Graph theory
- Basic terminology
- Graph search and breadth first search
- Two coloring
- Connectivity
- Topological search

Greedy Algorithms

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
- An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
- Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
- Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed
- Tasks $\{1,2, \ldots \mathrm{~N}\}$
- Start and finish times, s(i), f(i)

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm
$\mathrm{I}=\{ \}$
While (T is not empty)
Select a task trom T by a rule A
Add t to I
Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics

Schedule earliest starting task

Greedy solution based on earliest finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r<=\min (k, m), f\left(i_{r}\right)<=f\left(j_{r}\right)$

Stay ahead lemma

- A always stays ahead of $B, f\left(i_{r}\right)<=f\left(j_{r}\right)$
- Induction argument
$-f\left(\mathrm{i}_{1}\right)<=\mathrm{f}\left(\mathrm{j}_{1}\right)$
- If $f\left(i_{-1}\right)<=f\left(j_{r_{-}-1}\right)$ then $f\left(i_{r}\right)<=f\left(j_{r}\right)$

Completing the proof

- Let $A=\left\{i_{1}, \ldots, i_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $O=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
- If $k<m$, then the Earliest Finish Algorithm stopped before it ran out of tasks

Scheduling all intervals

- Minimize number of processors to schedule all intervals

How many processors are needed for this example?

Prove that you cannot schedule this set of intervals with two processors

Depth: maximum number of intervals active

Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness $=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

Example

Time

2
\square 3
\square

Deadline
2

4

Lateness 1

Lateness 3

Determine the minimum lateness

Time
\square
\square
\square

Deadline
6

4

5

12

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_{1}<=d_{2}<=\ldots<=d_{n}$
- A schedule has an inversion if job j is scheduled before i where $\mathrm{j}>\mathrm{i}$
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

List the inversions

Time

\square
\square

Deadline
5
6
12

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
- This type of can be important for keeping proofs clean
- It allows us to make a simplifying assumption for the remainder of the proof

Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion

Interchange argument

- Suppose there is a pair of jobs i and j , with $\mathrm{d}_{\mathrm{i}}<=\mathrm{d}_{\mathrm{j}}$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Proof by Bubble Sort

Determine maximum lateness

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k -1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

- How is the model unrealistic?

Extensions

- What if the objective is to minimize the sum of the lateness?
- EDF does not seem to work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Subsequence Testing

Is $a_{1} a_{2} \ldots a_{m}$ a subsequence of $b_{1} b_{2} \ldots b_{n}$?
e.g. A, B, C, D, A is a subsequence of $B, A, B, A, B, D, B, C, A, D, A, C, D, A$

Greedy Algorithm for Subsequence Testing

Shortest Paths

Single Source Shortest Path Problem

- Given a graph and a start vertex s
- Determine distance of every vertex from s
- Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from s

(c)
(a)

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY?

Assume all edges have non-negative cost

Dijkstra's Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S != V
Choose v in V-S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v

$$
\mathrm{d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
$$

Simulate Dijkstra's algorithm (strarting from s) on the graph

Who was Dijkstra?

- What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance

Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let v be a vertex in V-S with minimum $d[v]$
- Let P_{v} be a path of length $d[v]$, with an edge (u, v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
$-P=P_{s x}+c(x, y)+P_{y v}$
$-\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y]$
$-\operatorname{Len}\left(P_{y v}\right)>=0$
$-\operatorname{Len}(P)>=d[y]+0>=d[v]$

Negative Cost Edges

- Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

How do you adapt Dijkstra's algorithm to handle bottleneck distances

- Does the correctness proof still apply?

