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Announcements 

• Reading 

– For today,  sections 4.1, 4.2, 4.4 

– For January 28, sections 4.5, 4.7, 4.8 (Plus 

additional material from chapter 5) 

• No class January 21 

• Homework 2 is due January 21 



Highlights from last lecture 

• Algorithm runtime 

– Runtime as a function of problem size 

– Asymptotic analysis, (Big Oh notation) 

• Graph theory 

– Basic terminology 

– Graph search and breadth first search 

– Two coloring 

– Connectivity 

– Topological search 

 

 



Greedy Algorithms 



Greedy Algorithms 

• Solve problems with the simplest possible 

algorithm 

• The hard part: showing that something 

simple actually works 

• Pseudo-definition 

– An algorithm is Greedy if it builds its solution 

by adding elements one at a time using a 

simple rule 



Scheduling Theory 

• Tasks 

– Processing requirements, release times, 

deadlines 

• Processors 

• Precedence constraints 

• Objective function 

– Jobs scheduled, lateness, total execution time 



• Tasks occur at fixed times 

• Single processor 

• Maximize number of tasks completed 

 

 

• Tasks {1, 2, . . . N} 

• Start and finish times, s(i), f(i)   

Interval Scheduling 



What is the largest solution? 



Greedy Algorithm for Scheduling 

Let T be the set of tasks, construct a set of independent tasks I, A 

is the rule determining the greedy algorithm 

 

I = { } 

While (T is not empty) 

 Select a task t from T by a rule A 

 Add t to I 

 Remove t and all tasks incompatible with t from T 

  



Simulate the greedy algorithm for 

each of these heuristics 

Schedule earliest starting task 

Schedule shortest available task 

Schedule task with fewest conflicting tasks 



Greedy solution based on earliest 

finishing time 

Example 1 

Example 2 

Example 3 



Theorem: Earliest Finish Algorithm 

is Optimal 

• Key idea: Earliest Finish Algorithm stays 

ahead 

• Let A = {i1, . . ., ik} be the set of tasks found 

by EFA in increasing order of finish times 

• Let B = {j1, . . ., jm} be the set of tasks 

found by a different algorithm in increasing 

order of finish times 

• Show that for r<= min(k, m), f(ir) <= f(jr) 

 



Stay ahead lemma 

• A always stays ahead of B, f(ir) <= f(jr) 

• Induction argument 

– f(i1) <= f(j1) 

– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr) 



Completing the proof 

• Let A = {i1, . . ., ik} be the set of tasks found by 
EFA in increasing order of finish times 

• Let O = {j1, . . ., jm} be the set of tasks found by 
an optimal algorithm in increasing order of finish 
times 

• If k < m, then the Earliest Finish Algorithm 
stopped before it ran out of tasks 

 



Scheduling all intervals 

• Minimize number of processors to 

schedule all intervals 



How many processors are needed 

for this example? 



Prove that you cannot schedule this set 

of intervals with two processors 



Depth: maximum number of 

intervals active  



Algorithm 

• Sort by start times 

• Suppose maximum depth is d, create d 

slots 

• Schedule items in increasing order, assign 

each item to an open slot 

 

• Correctness proof: When we reach an 

item, we always have an open slot 



Scheduling tasks 

• Each task has a length ti and a deadline di 

• All tasks are available at the start 

• One task may be worked on at a time 

• All tasks must be completed 

 

• Goal minimize maximum lateness 

– Lateness = fi – di if fi >= di 
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Determine the minimum lateness 
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Greedy Algorithm 

• Earliest deadline first 

• Order jobs by deadline 

 

• This algorithm is optimal 



Analysis 

• Suppose the jobs are ordered by deadlines,     

d1 <= d2 <= . . . <= dn 

• A schedule has an inversion if job j is scheduled 

before i where j > i 

 

• The schedule A computed by the greedy 

algorithm has no inversions. 

• Let O be the optimal schedule, we want to show 

that A has the same maximum lateness as O 



List the inversions 
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Lemma: There is an optimal 

schedule with no idle time 

• It doesn’t hurt to start your homework early! 

 

• Note on proof techniques 

– This type of can be important for keeping proofs clean 

– It allows us to make a simplifying assumption for the 

remainder of the proof 

a4 a2 a3 a1 



Lemma 

• If there is an inversion i, j, there is a pair of 

adjacent jobs i’, j’ which form an inversion 



Interchange argument 

• Suppose there is a pair of jobs i and j, with  

di <= dj,  and j scheduled immediately 

before i.  Interchanging i and j does not 

increase the maximum lateness.   

di  dj di  dj 

j i j i 



Proof by Bubble Sort 

a4 a2 a3 a1 

a4 a2 a3 

a4 a2 a3 a1 

a4 a2 a3 a1 

a1 

a4 a2 a3 a1 

Determine maximum lateness 

d1 d2 d3 d4 



Real Proof 

• There is an optimal schedule with no 
inversions and no idle time. 

• Let O be an optimal schedule k inversions, 
we construct a new optimal schedule with 
k-1 inversions 

• Repeat until we have an optimal schedule 
with 0 inversions 

• This is the solution found by the earliest 
deadline first algorithm 



Result 

• Earliest Deadline First algorithm 

constructs a schedule that minimizes the 

maximum lateness 

 



Homework Scheduling 

• How is the model unrealistic? 



Extensions 

• What if the objective is to minimize the 
sum of the lateness? 

– EDF does not seem to work 

• If the tasks have release times and 
deadlines, and are non-preemptable, the 
problem is NP-complete 

• What about the case with release times 
and deadlines where tasks are 
preemptable? 



Subsequence Testing 

Is a1a2…am a subsequence of b1b2…bn ? 
e.g. A,B,C,D,A is a subsequence of B,A,B,A,B,D,B,C,A,D,A,C,D,A

  



Greedy Algorithm for 

Subsequence Testing 



Shortest Paths 



Single Source Shortest Path 

Problem 

• Given a graph and a start vertex s 

– Determine distance of every vertex from s 

– Identify shortest paths to each vertex 
• Express concisely as a “shortest paths tree” 

• Each vertex has a pointer to a predecessor on 
shortest path 

s 

v 

x 

u 
1 2 

5 

3 4 

s 

v 

x 

u 

1 

3 

3 



Construct Shortest Path Tree  

from s 
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Warmup 

• If P is a shortest path from s to v, and if t is 

on the path P, the segment from s to t is a 

shortest path between s and t 

 

 

• WHY?   
s 

t 
v 



Dijkstra’s Algorithm 

S = {};    d[s] = 0;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], d[v] + c(v, w)) 
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Assume all edges have non-negative cost 



Simulate Dijkstra’s algorithm 

(strarting from s) on the graph 
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Who was Dijkstra? 

• What were his major contributions? 



http://www.cs.utexas.edu/users/EWD/ 

• Edsger Wybe Dijkstra was one of the most 
influential members of computing science's 
founding generation. Among the domains in 
which his scientific contributions are 
fundamental are  
– algorithm design  

– programming languages  

– program design  

– operating systems  

– distributed processing  

– formal specification and verification  

– design of mathematical arguments  

 



Dijkstra’s Algorithm as a greedy 

algorithm 

• Elements committed to the solution by 

order of minimum distance 



Correctness Proof 

• Elements in S have the correct label 

• Key to proof:  when v is added to S, it has 

the correct distance label. 
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Proof 

• Let v be a vertex in V-S with minimum d[v] 

• Let Pv be a path of length d[v], with an edge (u,v) 

• Let P be some other path to v.  Suppose P first 

leaves S on the edge (x, y) 

– P = Psx + c(x,y) + Pyv 

– Len(Psx) + c(x,y) >= d[y] 

– Len(Pyv) >= 0 

– Len(P) >= d[y] + 0 >= d[v] 
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Negative Cost Edges 

• Draw a small example a negative cost 

edge and show that Dijkstra’s algorithm 

fails on this example 



Bottleneck Shortest Path 

• Define the bottleneck distance for a path 

to be the maximum cost edge along the 

path 
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Compute the bottleneck shortest 

paths 
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How do you adapt Dijkstra’s algorithm  

to handle bottleneck distances 

• Does the correctness proof still apply? 


