
CSEP 521

Applied Algorithms

Richard Anderson

Winter 2013

Lecture 3

Announcements

• Reading

– For today, sections 4.1, 4.2, 4.4

– For January 28, sections 4.5, 4.7, 4.8 (Plus

additional material from chapter 5)

• No class January 21

• Homework 2 is due January 21

Highlights from last lecture

• Algorithm runtime

– Runtime as a function of problem size

– Asymptotic analysis, (Big Oh notation)

• Graph theory

– Basic terminology

– Graph search and breadth first search

– Two coloring

– Connectivity

– Topological search

Greedy Algorithms

Greedy Algorithms

• Solve problems with the simplest possible

algorithm

• The hard part: showing that something

simple actually works

• Pseudo-definition

– An algorithm is Greedy if it builds its solution

by adding elements one at a time using a

simple rule

Scheduling Theory

• Tasks

– Processing requirements, release times,

deadlines

• Processors

• Precedence constraints

• Objective function

– Jobs scheduled, lateness, total execution time

• Tasks occur at fixed times

• Single processor

• Maximize number of tasks completed

• Tasks {1, 2, . . . N}

• Start and finish times, s(i), f(i)

Interval Scheduling

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A

is the rule determining the greedy algorithm

I = { }

While (T is not empty)

 Select a task t from T by a rule A

 Add t to I

 Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for

each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Greedy solution based on earliest

finishing time

Example 1

Example 2

Example 3

Theorem: Earliest Finish Algorithm

is Optimal

• Key idea: Earliest Finish Algorithm stays

ahead

• Let A = {i1, . . ., ik} be the set of tasks found

by EFA in increasing order of finish times

• Let B = {j1, . . ., jm} be the set of tasks

found by a different algorithm in increasing

order of finish times

• Show that for r<= min(k, m), f(ir) <= f(jr)

Stay ahead lemma

• A always stays ahead of B, f(ir) <= f(jr)

• Induction argument

– f(i1) <= f(j1)

– If f(ir-1) <= f(jr-1) then f(ir) <= f(jr)

Completing the proof

• Let A = {i1, . . ., ik} be the set of tasks found by
EFA in increasing order of finish times

• Let O = {j1, . . ., jm} be the set of tasks found by
an optimal algorithm in increasing order of finish
times

• If k < m, then the Earliest Finish Algorithm
stopped before it ran out of tasks

Scheduling all intervals

• Minimize number of processors to

schedule all intervals

How many processors are needed

for this example?

Prove that you cannot schedule this set

of intervals with two processors

Depth: maximum number of

intervals active

Algorithm

• Sort by start times

• Suppose maximum depth is d, create d

slots

• Schedule items in increasing order, assign

each item to an open slot

• Correctness proof: When we reach an

item, we always have an open slot

Scheduling tasks

• Each task has a length ti and a deadline di

• All tasks are available at the start

• One task may be worked on at a time

• All tasks must be completed

• Goal minimize maximum lateness

– Lateness = fi – di if fi >= di

Example

2

3

2

4

Deadline Time

2 3

2 3

Lateness 1

Lateness 3

Determine the minimum lateness

2

3

4

5

6

4

5

12

Deadline Time

Greedy Algorithm

• Earliest deadline first

• Order jobs by deadline

• This algorithm is optimal

Analysis

• Suppose the jobs are ordered by deadlines,

d1 <= d2 <= . . . <= dn

• A schedule has an inversion if job j is scheduled

before i where j > i

• The schedule A computed by the greedy

algorithm has no inversions.

• Let O be the optimal schedule, we want to show

that A has the same maximum lateness as O

List the inversions

2

3

4

5

4

5

6

12

Deadline Time

a1

a2

a3

a4

a4 a2 a3 a1

Lemma: There is an optimal

schedule with no idle time

• It doesn’t hurt to start your homework early!

• Note on proof techniques

– This type of can be important for keeping proofs clean

– It allows us to make a simplifying assumption for the

remainder of the proof

a4 a2 a3 a1

Lemma

• If there is an inversion i, j, there is a pair of

adjacent jobs i’, j’ which form an inversion

Interchange argument

• Suppose there is a pair of jobs i and j, with

di <= dj, and j scheduled immediately

before i. Interchanging i and j does not

increase the maximum lateness.

di dj di dj

j i j i

Proof by Bubble Sort

a4 a2 a3 a1

a4 a2 a3

a4 a2 a3 a1

a4 a2 a3 a1

a1

a4 a2 a3 a1

Determine maximum lateness

d1 d2 d3 d4

Real Proof

• There is an optimal schedule with no
inversions and no idle time.

• Let O be an optimal schedule k inversions,
we construct a new optimal schedule with
k-1 inversions

• Repeat until we have an optimal schedule
with 0 inversions

• This is the solution found by the earliest
deadline first algorithm

Result

• Earliest Deadline First algorithm

constructs a schedule that minimizes the

maximum lateness

Homework Scheduling

• How is the model unrealistic?

Extensions

• What if the objective is to minimize the
sum of the lateness?

– EDF does not seem to work

• If the tasks have release times and
deadlines, and are non-preemptable, the
problem is NP-complete

• What about the case with release times
and deadlines where tasks are
preemptable?

Subsequence Testing

Is a1a2…am a subsequence of b1b2…bn ?
e.g. A,B,C,D,A is a subsequence of B,A,B,A,B,D,B,C,A,D,A,C,D,A

Greedy Algorithm for

Subsequence Testing

Shortest Paths

Single Source Shortest Path

Problem

• Given a graph and a start vertex s

– Determine distance of every vertex from s

– Identify shortest paths to each vertex
• Express concisely as a “shortest paths tree”

• Each vertex has a pointer to a predecessor on
shortest path

s

v

x

u
1 2

5

3 4

s

v

x

u

1

3

3

Construct Shortest Path Tree

from s

a

b

c
s

e

g

f

d

4

2

-3

2

1
5

4

-2
3

3

6

3

7

4
a

b

c
s

e

g

f

d

Warmup

• If P is a shortest path from s to v, and if t is

on the path P, the segment from s to t is a

shortest path between s and t

• WHY?
s

t
v

Dijkstra’s Algorithm

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

 Choose v in V-S with minimum d[v]

 Add v to S

 For each w in the neighborhood of v

 d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1

4

3

2

3

2

1

2

1 0

1

2 2

5

4

Assume all edges have non-negative cost

Simulate Dijkstra’s algorithm

(strarting from s) on the graph

1

2

3

4

5

Round
Vertex

Added
s a b c d

b d

c a

1

1

1

2 3

4

6

1

3

4
s

Who was Dijkstra?

• What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

• Edsger Wybe Dijkstra was one of the most
influential members of computing science's
founding generation. Among the domains in
which his scientific contributions are
fundamental are
– algorithm design

– programming languages

– program design

– operating systems

– distributed processing

– formal specification and verification

– design of mathematical arguments

Dijkstra’s Algorithm as a greedy

algorithm

• Elements committed to the solution by

order of minimum distance

Correctness Proof

• Elements in S have the correct label

• Key to proof: when v is added to S, it has

the correct distance label.

s

y

v

x

u

Proof

• Let v be a vertex in V-S with minimum d[v]

• Let Pv be a path of length d[v], with an edge (u,v)

• Let P be some other path to v. Suppose P first

leaves S on the edge (x, y)

– P = Psx + c(x,y) + Pyv

– Len(Psx) + c(x,y) >= d[y]

– Len(Pyv) >= 0

– Len(P) >= d[y] + 0 >= d[v]

s

y

v

x

u

Negative Cost Edges

• Draw a small example a negative cost

edge and show that Dijkstra’s algorithm

fails on this example

Bottleneck Shortest Path

• Define the bottleneck distance for a path

to be the maximum cost edge along the

path

s

v

x

u
6 5

5

3 4

2

Compute the bottleneck shortest

paths

a

b

c
s

e

g

f

d

4

2

-3

6

6
5

4

-2
3

4

6

3

7

4
a

b

c
s

e

g

f

d

How do you adapt Dijkstra’s algorithm

to handle bottleneck distances

• Does the correctness proof still apply?

