CSEP 521 Applied Algorithms

Richard Anderson Winter 2013 Lecture 3

Announcements

- Reading
 - For today, sections 4.1, 4.2, 4.4
 - For January 28, sections 4.5, 4.7, 4.8 (Plus additional material from chapter 5)
- · No class January 21
- · Homework 2 is due January 21

Highlights from last lecture

- · Algorithm runtime
 - Runtime as a function of problem size
 - Asymptotic analysis, (Big Oh notation)
- · Graph theory
 - Basic terminology
 - Graph search and breadth first search
 - Two coloring
 - Connectivity
 - Topological search

Greedy Algorithms

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
 - An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
 - Processing requirements, release times, deadlines
- Processors
- · Precedence constraints
- · Objective function
 - Jobs scheduled, lateness, total execution time

Interval Scheduling

- · Tasks occur at fixed times
- · Single processor
- · Maximize number of tasks completed
- Tasks {1, 2, ... N}
- · Start and finish times, s(i), f(i)

What is the largest solution?

Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

I = { }

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics Schedule earliest starting task Schedule shortest available task Schedule shortest available task Schedule task with fewest conflicting tasks

finishing time					
Example 1					
Example 2					
Example 3					
<u> </u>					

Greedy solution based on earliest

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let A = {i₁, ..., i_k} be the set of tasks found by EFA in increasing order of finish times
- Let B = {j₁, ..., j_m} be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $r \le \min(k, m)$, $f(i_r) \le f(j_r)$

Stay ahead lemma

- A always stays ahead of B, f(i_r) <= f(j_r)
- Induction argument
 - $-f(i_1) <= f(j_1)$
 - $\text{ If } f(i_{r-1}) \le f(j_{r-1}) \text{ then } f(i_r) \le f(j_r)$

Completing the proof

- Let $A=\{i_1,\,\ldots,\,i_k\}$ be the set of tasks found by EFA in increasing order of finish times
- Let O = {j₁, ..., j_m} be the set of tasks found by an optimal algorithm in increasing order of finish times
- If k < m, then the Earliest Finish Algorithm stopped before it ran out of tasks

Schedul	lina	all	intarya	le
Scriedu	IIIIQ	all	IIILEIVa	ıs

 Minimize number of processors to schedule all intervals

How many processors are needed

Prove that you cannot schedule this set of intervals with two processors

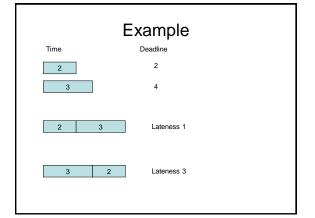
Depth: maximum number of intervals active

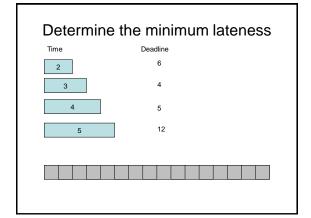
Algorithm

- · Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

- Each task has a length ti and a deadline di
- · All tasks are available at the start
- · One task may be worked on at a time
- · All tasks must be completed
- Goal minimize maximum lateness
 - Lateness = $f_i d_i$ if $f_i >= d_i$



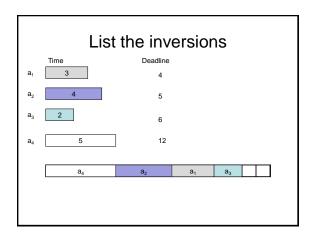


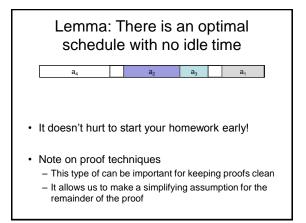
Greedy Algorithm

- · Earliest deadline first
- · Order jobs by deadline
- This algorithm is optimal

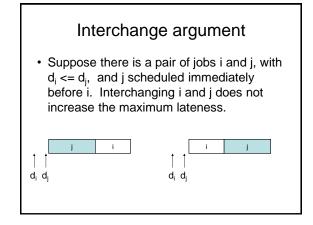
Analysis

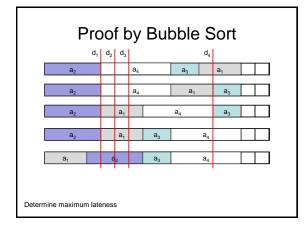
- Suppose the jobs are ordered by deadlines, $d_1 \le d_2 \le \ldots \le d_n$
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O





Lemma • If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion





Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Homework Scheduling

How is the model unrealistic?

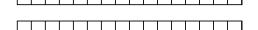
Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not seem to work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Subsequence Testing

Is $a_1a_2...a_m$ a subsequence of $b_1b_2...b_n$? e.g. A,B,C,D,A is a subsequence of B,A,B,A,B,D,B,C,A,D,A,C,D,A

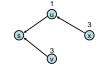
Greedy Algorithm for Subsequence Testing

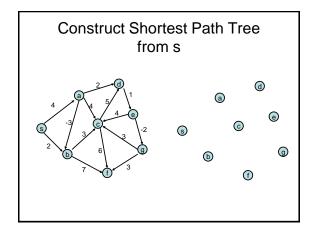


Shortest Paths

Single Source Shortest Path Problem

- · Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - · Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

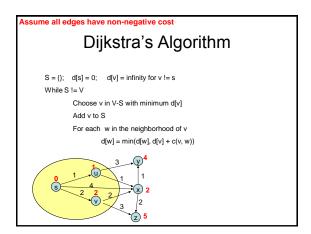




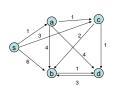
Warmup

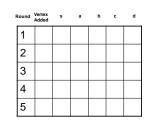
• If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t

• WHY?



Simulate Dijkstra's algorithm (strarting from s) on the graph





Who was Dijkstra?

What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

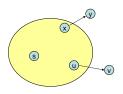
- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

 Elements committed to the solution by order of minimum distance

Correctness Proof

- · Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.



Proof

- Let v be a vertex in V-S with minimum d[v]
- Let P_v be a path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)

$$-P = P_{sx} + c(x,y) + P_{yy}$$

$$- \operatorname{Len}(P_{sx}) + c(x,y) >= d[y]$$

$$- \operatorname{Len}(P_{yv}) >= 0$$

$$- Len(P) >= d[y] + 0 >= d[v]$$

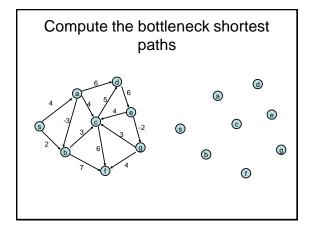


Negative Cost Edges

 Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

 Define the bottleneck distance for a path to be the maximum cost edge along the path



How do you adapt Dijkstra's algorithm to handle bottleneck distances

• Does the correctness proof still apply?