CSEP 521 Applied Algorithms

Richard Anderson Winter 2013 Lecture 4

Announcements

Reading

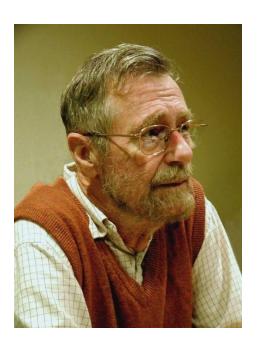
- For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Interval Scheduling

Highlights from last lecture

- Greedy Algorithms
- Dijkstra's Algorithm





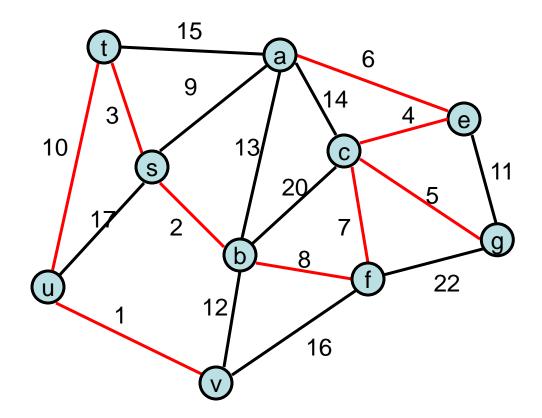
Today

- Minimum spanning trees
- Applications of Minimum Spanning trees
- Huffman codes
- Homework solutions
- Recurrences

Minimum Spanning Tree

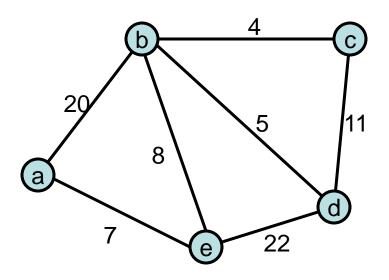
- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree



Greedy Algorithms for Minimum Spanning Tree

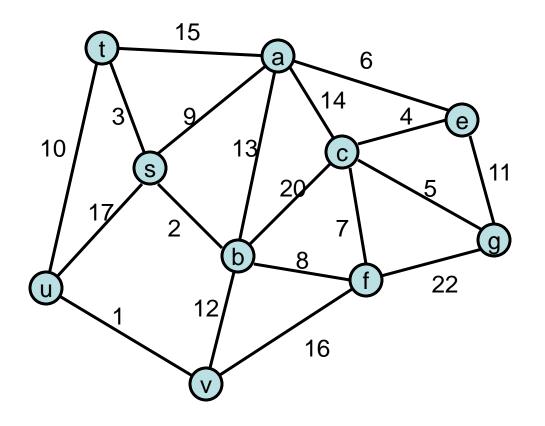
- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph



Greedy Algorithm 1 Prim's Algorithm

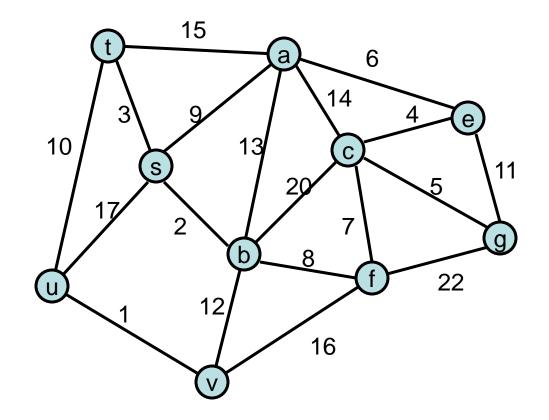
 Extend a tree by including the cheapest out going edge

Label the edges in order of insertion



Greedy Algorithm 2 Kruskal's Algorithm

 Add the cheapest edge that joins disjoint components

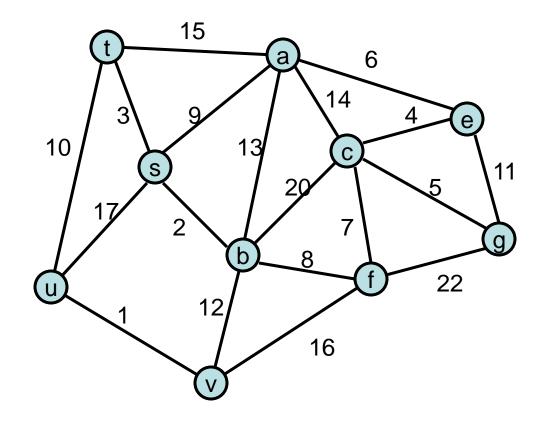


Construct the MST with Kruskal's algorithm

Label the edges in order of insertion

Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph



Construct the MST with the reversedelete algorithm

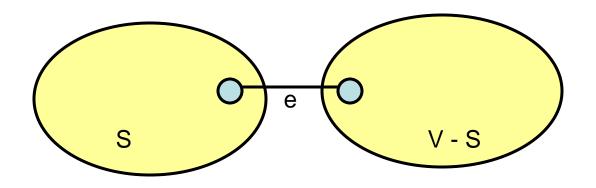
Label the edges in order of removal

Why do the greedy algorithms work?

 For simplicity, assume all edge costs are distinct

Edge inclusion lemma

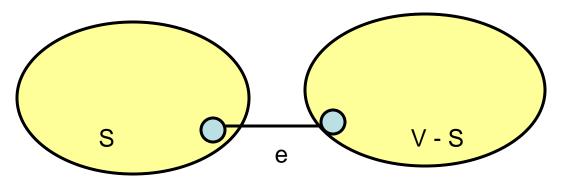
- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 Or equivalently, if e is not in T, then T is not a minimum spanning tree



e is the minimum cost edge between S and V-S

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S



- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

 Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.

Prim's Algorithm

choose the minimum cost edge e = (u,v), with u in S, and v in V-S add e to T add v to S

Prove Prim's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Dijkstra's Algorithm for Minimum Spanning Trees

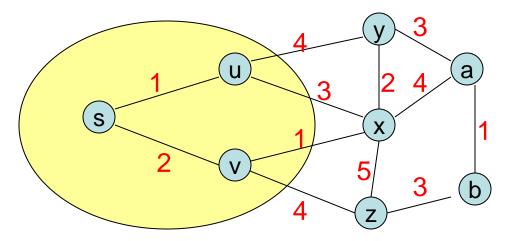
 $S = \{\}; d[s] = 0; d[v] = infinity for v != s$ While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))



Kruskal's Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > 1
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i \cup C_j$ Add e to T

Prove Kruskal's algorithm computes an MST

 Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

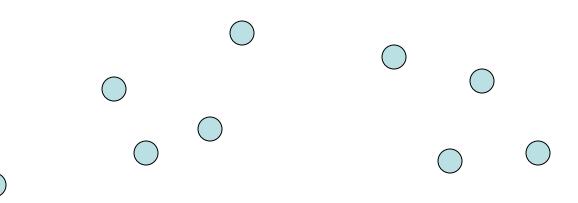
• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Application: Clustering

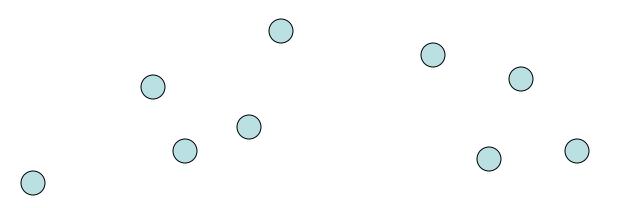
 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together



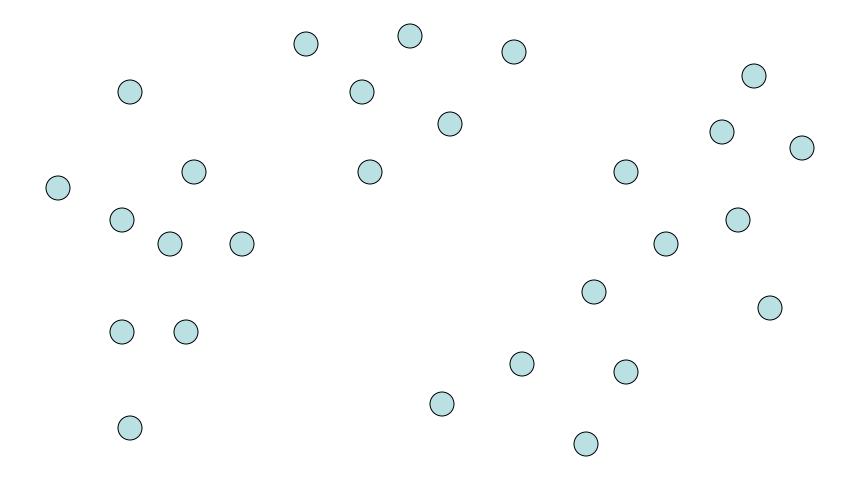
Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

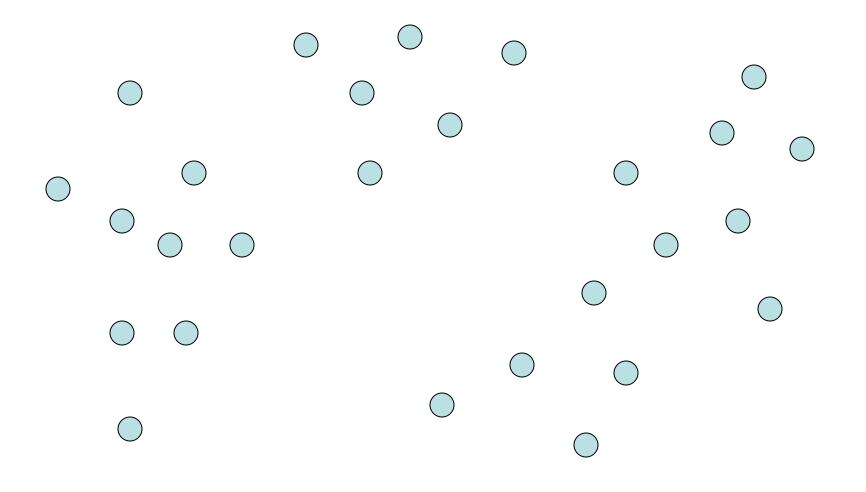
- dist (S₁, S₂) = min {dist(x, y) | x in S₁, y in S₂}



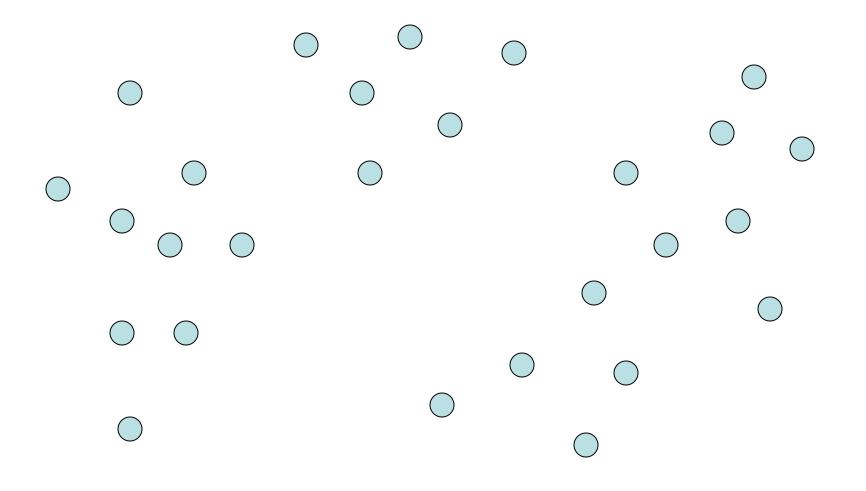
Divide into 2 clusters



Divide into 3 clusters



Divide into 4 clusters



Distance Clustering Algorithm

```
Let C = \{\{v_1\}, \{v_2\}, \dots, \{v_n\}\}; T = \{\}
while |C| > K
```

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by $C_i U C_j$

K-clustering

Huffman Codes

 Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

$$S = \{a, b, c, d\}, f(a) = .4, f(b) = .3, f(c) = .2, f(d) = .1$$

Prefix codes

- A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree

Optimal prefix code

- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- ABL(Code): Average Bits per Letter

Properties of optimal codes

- The tree for an optimal code is full
- If $f(x) \le f(y)$ then depth $(x) \ge$ depth(y)
- The two nodes of lowest frequency are at the same level
- There is an optimal code where the two lowest frequency words are siblings

Huffman Algorithm

- Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done

Correctness proof (sketch)

- Let y, z be the lowest frequency letters that are replaced by a letter w
- Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w

-ABL(T') = ABL(T) - f(w)

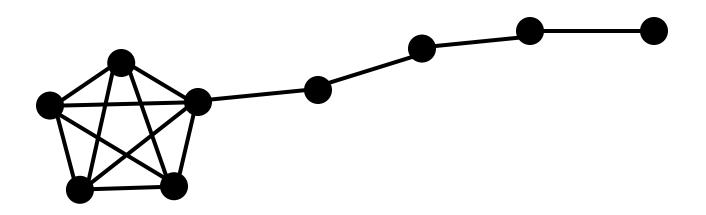
Correctness proof (sketch)

- Proof by induction
- Base case, n = 2
- Suppose Huffman algorithm is correct for n symbols
- Consider an n+1 symbol alphabet . . .

Homework problems

Exercise 8, Page 109

Prove that for any c, there is a graph G such that $Diag(G) \ge c APD(G)$

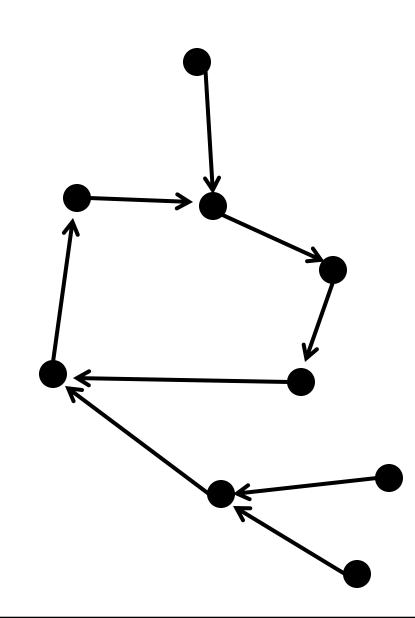


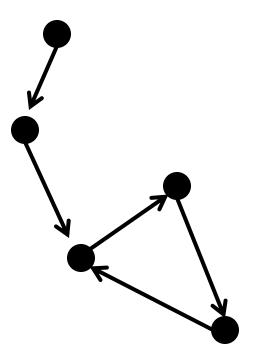
Exercise 12, Page 112

 Given info of the form P_i died before P_j born and P_i and P_j overlapped, determine if the data is internally consistent

Programming Problem

Random out degree one graph





Question:

What is the cycle structure as N gets large? How many cycles?

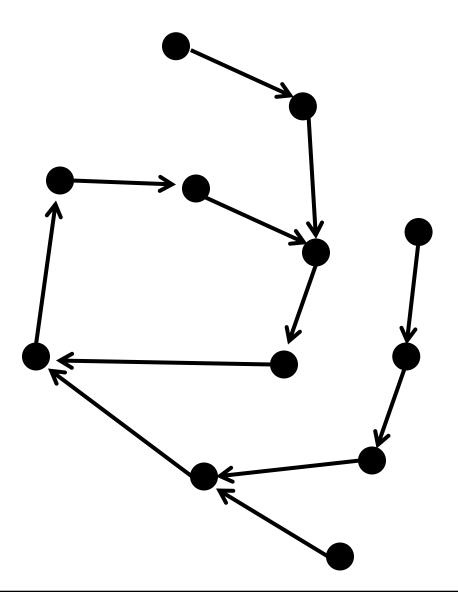
What is the cycle length?

Topological Sort Approach

- Run topological sort
 - Determine cycles
 - Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight

Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
 - Until a labeled vertex is reached
 - Until a new cycle is discovered
- Follow chain of vertices a second time to set labels



The code . . .

}

}

```
int cycleID;
if (cycle[y] == -1) {
    cycleID = cycles.AddCycle();
    for (int a = y; a != x; a = next[a]) {
        cycle[a] = (sbyte) cycleID;
        cycles.AddCycleVertex(cycleID);
    }
    cycle[x] = (sbyte) cycleID;
    cycles.AddCycleVertex(cycleID);
    }
else
    cycleID = cycle[y];
```

```
for (int a = v; cycle[a] == -1; a = next[a]) {
    cycle[a] = (sbyte) cycleID;
    cycles.AddBranchVertex(cycleID);
```

Results from Random Graphs

What is the length of the longest cycle?

How many cycles?

Recurrences

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)

Divide and Conquer

Array Mergesort(Array a){ n = a.Length; if (n <= 1) return a; b = Mergesort(a[0 .. n/2]); c = Mergesort(a[n/2+1 .. n-1]); return Merge(b, c);

}

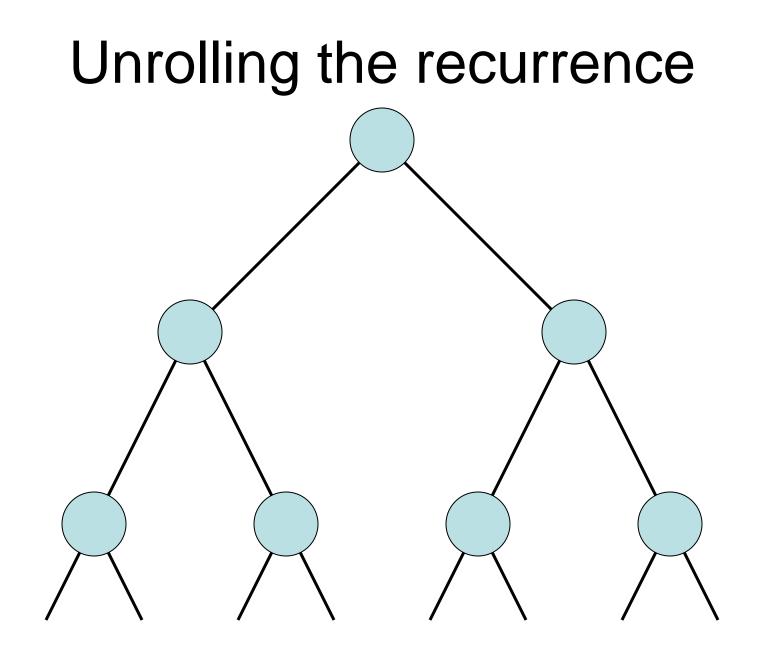
Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$T(n) \le 2T(n/2) + cn; T(1) \le c;$

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"



Substitution

Prove $T(n) \le cn (log_2 n + 1)$ for $n \ge 1$

Induction: Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?

Unroll recurrence for T(n) = 3T(n/3) + dn

Recurrence Examples

- T(n) = 2 T(n/2) + cn- $O(n \log n)$
- T(n) = T(n/2) + cn- O(n)
- More useful facts:
 log_kn = log₂n / log₂k
 k ^{log n} = n ^{log k}

T(n) = aT(n/b) + f(n)

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices: | r s | = | a b | | e g || t u | = | c d | | f h |

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.

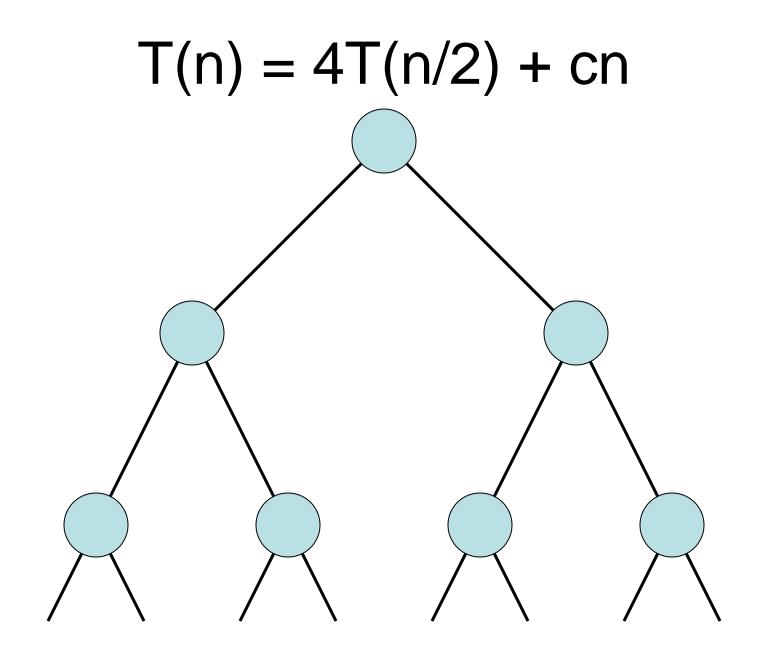
The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices

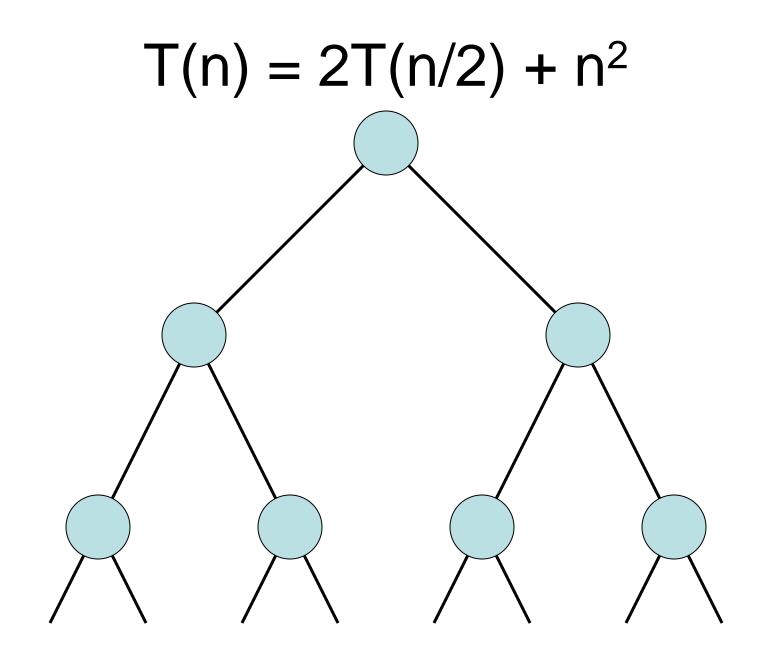
Recursive Matrix Multiplication

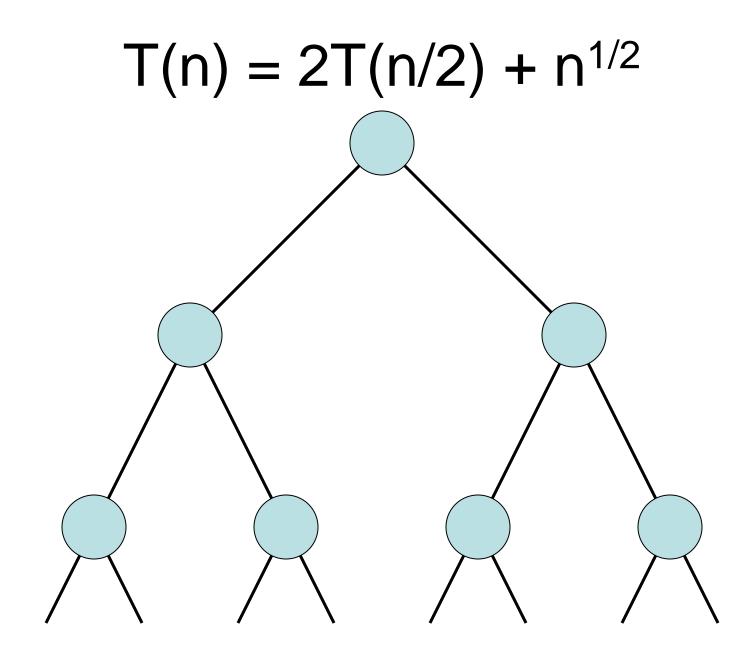
- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:







Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

- The bottom level wins

- Geometrically decreasing (x < 1)
 The top level wins
- Balanced (x = 1)

- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

Strassen's Algorithm

Multiply 2 x 2 Matrices: $\begin{vmatrix} r & s \end{vmatrix} = \begin{vmatrix} a & b \end{vmatrix} \begin{vmatrix} e & g \end{vmatrix}$ $\begin{vmatrix} t & u \end{vmatrix} \begin{vmatrix} c & d \end{vmatrix} \begin{vmatrix} f & h \end{vmatrix}$ $r = p_1 + p_4 - p_5 + p_7$ $s = p_3 + p_5$ $t = p_2 + p_5$ $u = p_1 + p_3 - p_2 + p_7$

Where: $p_1 = (b + d)(f + g)$ $p_2 = (c + d)e$ $p_3 = a(g - h)$ $p_4 = d(f - e)$ $p_5 = (a - b)h$ $p_{e} = (c - d)(e + g)$ $p_7 = (b - d)(f + h)$

Recurrence for Strassen's Algorithms

- $T(n) = 7 T(n/2) + cn^2$
- What is the runtime?