
CSEP 521

Applied Algorithms

Richard Anderson

Winter 2013

Lecture 4

Announcements

• Reading

– For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Interval Scheduling

Highlights from last lecture

• Greedy Algorithms

• Dijkstra’s Algorithm

Today

• Minimum spanning trees

• Applications of Minimum Spanning trees

• Huffman codes

• Homework solutions

• Recurrences

Minimum Spanning Tree

• Introduce Problem

• Demonstrate three different greedy

algorithms

• Provide proofs that the algorithms work

Minimum Spanning Tree

c

e

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

s

g

f
b

a t

u

v

Greedy Algorithms for Minimum

Spanning Tree

• [Prim] Extend a tree by

including the cheapest

out going edge

• [Kruskal] Add the

cheapest edge that joins

disjoint components

• [ReverseDelete] Delete

the most expensive edge

that does not disconnect

the graph

4

11 5

7

20

8

22

a

b c

d

e

Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest

out going edge

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Prim’s

algorithm starting

from vertex a

Label the edges in

order of insertion

Greedy Algorithm 2

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint

components

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with Kruskal’s

algorithm

Label the edges in

order of insertion

Greedy Algorithm 3

Reverse-Delete Algorithm

• Delete the most expensive edge that does

not disconnect the graph

9

2

13

6

4

11
5

7

20

14

15

10

1

8

12

16

22

17

3

t a

e

c

g

f
b

s

u

v

Construct the MST

with the reverse-

delete algorithm

Label the edges in

order of removal

Why do the greedy algorithms

work?

• For simplicity, assume all edge costs are

distinct

Edge inclusion lemma

• Let S be a subset of V, and suppose e =

(u, v) is the minimum cost edge of E, with

u in S and v in V-S

• e is in every minimum spanning tree of G

– Or equivalently, if e is not in T, then T is not a

minimum spanning tree

S V - S

e

Proof

• Suppose T is a spanning tree that does not contain e

• Add e to T, this creates a cycle

• The cycle must have some edge e1 = (u1, v1) with u1 in S
and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

S V - S
e

e is the minimum cost edge

between S and V-S

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the

MST by Prim or Kruskal, the edge is the

minimum cost edge between S and V-S

for some set S.

Prim’s Algorithm

S = { }; T = { };

while S != V

 choose the minimum cost edge

 e = (u,v), with u in S, and v in V-S

 add e to T

 add v to S

Prove Prim’s algorithm computes

an MST

• Show an edge e is in the MST when it is

added to T

Dijkstra’s Algorithm

for Minimum Spanning Trees

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

 Choose v in V-S with minimum d[v]

 Add v to S

 For each w in the neighborhood of v

 d[w] = min(d[w], c(v, w))

s

u

z

y

a

b

4

1

1

1

2

2
3

3

3
4

4

5 v

x

Kruskal’s Algorithm

Let C = {{v1}, {v2}, . . ., {vn}}; T = { }

while |C| > 1

 Let e = (u, v) with u in Ci and v in Cj be the

 minimum cost edge joining distinct sets in C

 Replace Ci and Cj by Ci U Cj

 Add e to T

Prove Kruskal’s algorithm

computes an MST

• Show an edge e is in the MST when it is

added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a

cycle is never in a minimum spanning tree

Dealing with the assumption of no

equal weight edges

• Force the edge weights to be distinct

– Add small quantities to the weights

– Give a tie breaking rule for equal weight

edges

Application: Clustering

• Given a collection of points in an r-

dimensional space, and an integer K,

divide the points into K sets that are

closest together

Distance clustering

• Divide the data set into K subsets to

maximize the distance between any pair of

sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Divide into 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

 Let e = (u, v) with u in Ci and v in Cj be the

 minimum cost edge joining distinct sets in C

 Replace Ci and Cj by Ci U Cj

K-clustering

Huffman Codes

• Given a set of symbols of known

frequency, encode in binary to minimize

the average length of a message

S = {a, b, c, d}, f(a) = .4, f(b) = .3, f(c) = .2, f(d) = .1

Prefix codes

• A code is a prefix code, if there is no pair

of code words X and Y, where X is a prefix

of Y

• A prefix code can be decoded with a left to

right scan

• A binary prefix code can be represented

as a binary tree

Optimal prefix code

• Given a set of symbols with frequencies

for the symbols, design a prefix code with

minimum average length

• ABL(Code): Average Bits per Letter

Properties of optimal codes

• The tree for an optimal code is full

• If f(x) ≤ f(y) then depth(x) ≥ depth(y)

• The two nodes of lowest frequency are at

the same level

• There is an optimal code where the two

lowest frequency words are siblings

Huffman Algorithm

• Pick the two lowest frequency items

• Replace with a new item with there

combined frequencies

• Repeat until done

Correctness proof (sketch)

• Let y, z be the lowest frequency letters

that are replaced by a letter w

• Let T be the tree constructed by the

Huffman algorithm, and T’ be the tree

constructed by the Huffman algorithm

when y, z are replaced by w

– ABL(T’) = ABL(T) – f(w)

Correctness proof (sketch)

• Proof by induction

• Base case, n = 2

• Suppose Huffman algorithm is correct for

n symbols

• Consider an n+1 symbol alphabet . . .

Homework problems

Exercise 8, Page 109

Prove that for any c, there is a graph G such that Diag(G) ≥ c APD(G)

Exercise 12, Page 112

• Given info of the form Pi died before Pj

born and Pi and Pj overlapped, determine

if the data is internally consistent

Programming Problem

Question:

What is the cycle structure as N gets

large?

How many cycles?

What is the cycle length?

Random out degree one graph

Topological Sort Approach

• Run topological sort

– Determine cycles

– Order vertices on branches

• Label vertices on the cycles

• Label vertices on branches computing

cycle weight

Pointer chasing algorithm

• Label vertices with the

number of their cycle

• Pick a vertex, follow

chain of pointers

– Until a labeled vertex is

reached

– Until a new cycle is

discovered

• Follow chain of vertices

a second time to set

labels

The code . . .

void MarkCycle(int v,

 CycleStructure cycles,

 bool[] mark,

 sbyte[] cycle) {

 if (mark[v] == true)

 return;

 int y = v;

 int x;

 do {

 x = y;

 y = next[x];

 mark[x] = true;

 }

 while (mark[y] == false);

 int cycleID;

 if (cycle[y] == -1) {

 cycleID = cycles.AddCycle();

 for (int a = y; a != x; a = next[a]) {

 cycle[a] = (sbyte) cycleID;

 cycles.AddCycleVertex(cycleID);

 }

 cycle[x] = (sbyte) cycleID;

 cycles.AddCycleVertex(cycleID);

 }

 else

 cycleID = cycle[y];

 for (int a = v; cycle[a] == -1; a = next[a]) {

 cycle[a] = (sbyte) cycleID;

 cycles.AddBranchVertex(cycleID);

 }

 }

Results from Random Graphs

What is the length of the longest cycle?

How many cycles?

Recurrences

Divide and Conquer

• Recurrences, Sections 5.1 and 5.2

• Algorithms

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

– FFT (5.6)

Divide and Conquer

Array Mergesort(Array a){

 n = a.Length;

 if (n <= 1)

 return a;

 b = Mergesort(a[0 .. n/2]);

 c = Mergesort(a[n/2+1 .. n-1]);

 return Merge(b, c);

}

Algorithm Analysis

• Cost of Merge

• Cost of Mergesort

T(n) <= 2T(n/2) + cn; T(1) <= c;

Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

Unrolling the recurrence

Substitution

Prove T(n) <= cn (log2n + 1) for n >= 1

Induction:

Base Case:

Induction Hypothesis:

A better mergesort (?)

• Divide into 3 subarrays and recursively

sort

• Apply 3-way merge

What is the recurrence?

Unroll recurrence for

T(n) = 3T(n/3) + dn

Recurrence Examples

• T(n) = 2 T(n/2) + cn

– O(n log n)

• T(n) = T(n/2) + cn

– O(n)

• More useful facts:

– logkn = log2n / log2k

– k log n = n log k

T(n) = aT(n/b) + f(n)

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u| | c d| | f h|

r = ae + bf

s = ag + bh

t = ce + df

u = cg + dh

A N x N matrix can be viewed as

a 2 x 2 matrix with entries that

are (N/2) x (N/2) matrices.

The recursive matrix

multiplication algorithm

recursively multiplies the

(N/2) x (N/2) matrices and

combines them using the

equations for multiplying 2 x 2

matrices

=

Recursive Matrix Multiplication

• How many recursive calls

are made at each level?

• How much work in

combining the results?

• What is the recurrence?

What is the run time for the recursive

Matrix Multiplication Algorithm?

• Recurrence:

T(n) = 4T(n/2) + cn

T(n) = 2T(n/2) + n2

T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth

What you really need to know

about recurrences

• Work per level changes geometrically with

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r s | | a b| |e g|

| t u| | c d| | f h|

r = p1 + p4 – p5 + p7

s = p3 + p5

t = p2 + p5

u = p1 + p3 – p2 + p7

Where:

p1 = (b + d)(f + g)

p2= (c + d)e

p3= a(g – h)

p4= d(f – e)

p5= (a – b)h

p6= (c – d)(e + g)

p7= (b – d)(f + h)

=

Recurrence for Strassen’s

Algorithms

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

