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Announcements 

• Reading 

– For today,  sections 4.5, 4.7, 4.8, 5.1, 5.2 

 

Interval Scheduling 



Highlights from last lecture 

• Greedy Algorithms 

• Dijkstra’s Algorithm 

 

 



Today 

• Minimum spanning trees 

• Applications of Minimum Spanning trees 

• Huffman codes 

• Homework solutions 

• Recurrences 



Minimum Spanning Tree 

• Introduce Problem 

• Demonstrate three different greedy 

algorithms 

• Provide proofs that the algorithms work 



Minimum Spanning Tree 
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Greedy Algorithms for Minimum 

Spanning Tree 

• [Prim] Extend a tree by 

including the cheapest 

out going edge 

• [Kruskal] Add the 

cheapest edge that joins 

disjoint components 

• [ReverseDelete] Delete 

the most expensive edge 

that does not disconnect 

the graph 
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Greedy Algorithm 1 

Prim’s Algorithm 

• Extend a tree by including the cheapest 

out going edge 
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Construct the MST 

with Prim’s 

algorithm starting 

from vertex a 

Label the edges in 

order of insertion 



Greedy Algorithm 2 

Kruskal’s Algorithm 

• Add the cheapest edge that joins disjoint 

components 
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Construct the MST 

with Kruskal’s 

algorithm 

Label the edges in 

order of insertion 



Greedy Algorithm 3 

Reverse-Delete Algorithm 

• Delete the most expensive edge that does 

not disconnect the graph 
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Construct the MST 

with the reverse-

delete algorithm 

Label the edges in 

order of removal 



Why do the greedy algorithms 

work? 

• For simplicity, assume all edge costs are 

distinct 



Edge inclusion lemma 

• Let S be a subset of V, and suppose e = 

(u, v) is the minimum cost edge of E, with 

u in S and v in V-S 

• e is in every minimum spanning tree of G 

– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree 

S V - S 

e 



Proof  

• Suppose T is a spanning tree that does not contain e 

• Add e to T, this creates a cycle 

• The cycle must have some edge e1 = (u1, v1) with u1 in S 
and v1 in V-S 

 

 

 

 

 

 

• T1 = T – {e1} + {e} is a spanning tree with lower cost 

• Hence, T is not a minimum spanning tree 

S V - S 
e 

e is the minimum cost edge 

between S and V-S 



Optimality Proofs 

• Prim’s Algorithm computes a MST 

• Kruskal’s Algorithm computes a MST 

 

• Show that when an edge is added to the 

MST by Prim or Kruskal, the edge is the 

minimum cost edge between S and V-S 

for some set S. 



Prim’s Algorithm 

S = { };    T = { }; 

while S != V 

 choose the minimum cost edge                    

 e = (u,v), with u in S, and v in V-S 

 add e to T 

 add v to S 

 



Prove Prim’s algorithm computes 

an MST  

• Show an edge e is in the MST when it is 

added to T 



Dijkstra’s Algorithm 

for Minimum Spanning Trees 

S = {};    d[s] = 0;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], c(v, w)) 
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Kruskal’s Algorithm 

Let C = {{v1}, {v2}, . . ., {vn}};  T = { } 

while |C| > 1 

 Let e = (u, v) with u in Ci and v in Cj be the 

 minimum cost edge joining distinct sets in C 

 Replace Ci and Cj by Ci U Cj 

 Add e to T 

  



Prove Kruskal’s algorithm 

computes an MST  

• Show an edge e is in the MST when it is 

added to T 



Reverse-Delete Algorithm 

• Lemma:  The most expensive edge on a 

cycle is never in a minimum spanning tree 



Dealing with the assumption of no 

equal weight edges 

• Force the edge weights to be distinct 

– Add small quantities to the weights  

– Give a tie breaking rule for equal weight 

edges  



Application: Clustering 

• Given a collection of points in an r-

dimensional space, and an integer K, 

divide the points into K sets that are 

closest together 



Distance clustering 

• Divide the data set into K subsets to 

maximize the distance between any pair of 

sets 

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2} 



Divide into 2 clusters 

 



Divide into 3 clusters 

 



Divide into 4 clusters 

 



Distance Clustering Algorithm 

Let C = {{v1}, {v2},. . ., {vn}};  T = { } 

while |C| > K 

 Let e = (u, v) with u in Ci and v in Cj be the 

 minimum cost edge joining distinct sets in C 

 Replace Ci and Cj by Ci U Cj 

   

  



K-clustering 



Huffman Codes 

• Given a set of symbols of known 

frequency, encode in binary to minimize 

the average length of a message 

S = {a, b, c, d},  f(a) = .4, f(b) = .3, f(c) = .2,  f(d) = .1 



Prefix codes 

• A code is a prefix code, if there is no pair 

of code words X and Y, where X is a prefix 

of Y 

• A prefix code can be decoded with a left to 

right scan 

• A binary prefix code can be represented 

as a binary tree 



Optimal prefix code 

• Given a set of symbols with frequencies 

for the symbols, design a prefix code with 

minimum average length 

• ABL(Code):  Average Bits per Letter 



Properties of optimal codes 

• The tree for an optimal code is full 

• If f(x) ≤ f(y) then depth(x) ≥ depth(y) 

• The two nodes of lowest frequency are at 

the same level 

• There is an optimal code where the two 

lowest frequency words are siblings 



Huffman Algorithm 

• Pick the two lowest frequency items 

• Replace with a new item with there 

combined frequencies 

• Repeat until done 



Correctness proof (sketch) 

• Let y, z be the lowest frequency letters 

that are replaced by a letter w 

• Let T be the tree constructed by the 

Huffman algorithm, and T’ be the tree 

constructed by the Huffman algorithm 

when y, z are replaced by w 

– ABL(T’) = ABL(T) – f(w) 



Correctness proof (sketch) 

• Proof by induction 

• Base case, n = 2 

• Suppose Huffman algorithm is correct for 

n symbols 

• Consider an n+1 symbol alphabet . . . 



Homework problems 

 



Exercise 8, Page 109 

Prove that for any c, there is a graph G such that Diag(G) ≥ c APD(G) 



Exercise 12, Page 112 

• Given info of the form Pi died before Pj 

born and Pi and Pj overlapped, determine 

if the data is internally consistent 



Programming Problem 

 



Question: 

What is the cycle structure as N gets 

large? 

How many cycles? 

What is the cycle length? 

Random out degree one graph 



Topological Sort Approach 

• Run topological sort 

– Determine cycles 

– Order vertices on branches 

• Label vertices on the cycles 

• Label vertices on branches computing 

cycle weight 



Pointer chasing algorithm 

• Label vertices with the 

number of their cycle 

• Pick a vertex, follow 

chain of pointers 

– Until a labeled vertex is 

reached 

– Until a new cycle is 

discovered 

• Follow chain of vertices 

a second time to set 

labels 

 



The code . . . 

void MarkCycle(int v,  

                         CycleStructure cycles, 

                         bool[] mark,  

                         sbyte[] cycle) { 

     if (mark[v] == true) 

          return; 

 

     int y = v; 

     int x; 

     do { 

          x = y; 

          y = next[x]; 

          mark[x] = true; 

      } 

      while (mark[y] == false); 

      int cycleID; 

      if (cycle[y] == -1) { 

           cycleID = cycles.AddCycle(); 

           for (int a = y; a != x; a = next[a]) { 

                 cycle[a] = (sbyte) cycleID; 

                 cycles.AddCycleVertex(cycleID); 

            } 

            cycle[x] = (sbyte) cycleID; 

            cycles.AddCycleVertex(cycleID); 

        } 

        else 

            cycleID = cycle[y]; 

 

        for (int a = v; cycle[a] == -1; a = next[a]) { 

             cycle[a] = (sbyte) cycleID; 

             cycles.AddBranchVertex(cycleID); 

        } 

  } 



Results from Random Graphs 

What is the length of the longest cycle? 

How many cycles? 



Recurrences 



Divide and Conquer 

• Recurrences, Sections 5.1 and 5.2 

• Algorithms 

– Counting Inversions (5.3) 

– Closest Pair (5.4) 

– Multiplication (5.5) 

– FFT (5.6) 



Divide and Conquer 

Array Mergesort(Array a){ 

 n = a.Length; 

 if (n <= 1) 

  return a; 

 b = Mergesort(a[0 .. n/2]); 

 c = Mergesort(a[n/2+1 .. n-1]); 

 return Merge(b, c); 

} 

  



Algorithm Analysis 

• Cost of Merge 

• Cost of Mergesort 



T(n) <= 2T(n/2) + cn; T(1) <= c; 

 



Recurrence Analysis 

• Solution methods 

– Unrolling recurrence 

– Guess and verify 

– Plugging in to a “Master Theorem” 



Unrolling the recurrence 



Substitution 

Prove T(n) <= cn (log2n + 1) for n >= 1 

Induction: 

Base Case: 

 

 

Induction Hypothesis: 



A better mergesort (?) 

• Divide into 3 subarrays and recursively 

sort 

• Apply 3-way merge 

What is the recurrence? 



Unroll recurrence for                  

T(n) = 3T(n/3) + dn 

 



Recurrence Examples 

• T(n) = 2 T(n/2) + cn 

– O(n log n) 

• T(n) = T(n/2) + cn 

– O(n) 

 

• More useful facts: 

– logkn = log2n / log2k 

– k log n = n log k 



T(n) = aT(n/b) + f(n) 

 



Recursive Matrix Multiplication 

Multiply 2 x 2 Matrices: 

| r    s |    | a    b|   |e    g| 

| t     u|    | c    d|   | f    h| 

 

r = ae + bf 

s = ag + bh 

t = ce + df 

u = cg + dh 

 

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices.  

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices 

= 



Recursive Matrix Multiplication 

• How many recursive calls 

are made at each level? 

 

• How much work in 

combining the results? 

 

• What is the recurrence? 

 

 



What is the run time for the recursive 

Matrix Multiplication Algorithm? 

• Recurrence:  



T(n) = 4T(n/2) + cn 



T(n) = 2T(n/2) + n2 

 



T(n) = 2T(n/2) + n1/2 

 



Recurrences 

• Three basic behaviors 

– Dominated by initial case 

– Dominated by base case 

– All cases equal – we care about the depth 



What you really need to know 

about recurrences 

• Work per level changes geometrically with 

the level 

• Geometrically increasing (x > 1) 

– The bottom level wins 

• Geometrically decreasing  (x < 1) 

– The top level wins 

• Balanced (x = 1) 

– Equal contribution 



Classify the following recurrences 

(Increasing, Decreasing, Balanced) 

• T(n) = n + 5T(n/8) 

 

• T(n) = n + 9T(n/8) 

 

• T(n) = n2 + 4T(n/2) 

 

• T(n) = n3 + 7T(n/2) 

 

• T(n) = n1/2 + 3T(n/4) 



Strassen’s Algorithm 

Multiply 2 x 2 Matrices: 

| r    s |    | a    b|   |e    g| 

| t     u|    | c    d|   | f    h| 

 

r = p1 + p4 – p5 + p7 

s = p3 + p5 

t = p2 + p5 

u = p1 + p3 – p2 + p7 

Where: 

p1 = (b + d)(f + g) 

p2= (c + d)e 

p3= a(g – h) 

p4= d(f – e) 

p5= (a – b)h 

p6= (c – d)(e + g) 

p7= (b – d)(f + h) 

= 



Recurrence for Strassen’s 

Algorithms 

• T(n) = 7 T(n/2) + cn2 

• What is the runtime? 

 


