

Highlights from last lecture

- Greedy Algorithms
- · Dijkstra's Algorithm

Today

- Minimum spanning trees
- Applications of Minimum Spanning trees
- · Huffman codes
- Homework solutions
- Recurrences

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?

For simplicity, assume all edge costs are distinct

V - S

Prove Prim's algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Dijkstra's Algorithm for Minimum Spanning Trees

Let C = {{v₁}, {v₂}, ..., {v_n}}; T = { } while |C| > 1 Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_j by C_i U C_j Add e to T

Prove Kruskal's algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct – Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{\ \}$

while |C| > K

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C Replace C_i and C_i by C_i U C_i

Huffman Codes

• Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

 $S=\{a,\,b,\,c,\,d\},\ f(a)=.4,\,f(b)=.3,\,f(c)=.2,\ f(d)=.1$

Prefix codes

- A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree

Optimal prefix code

- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- ABL(Code): Average Bits per Letter

Properties of optimal codes

- The tree for an optimal code is full
- If $f(x) \le f(y)$ then depth $(x) \ge$ depth(y)
- The two nodes of lowest frequency are at the same level
- There is an optimal code where the two lowest frequency words are siblings

Huffman Algorithm

- · Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done

Correctness proof (sketch)

- Let y, z be the lowest frequency letters that are replaced by a letter w
- Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w - ABL(T') = ABL(T) – f(w)

Correctness proof (sketch)

- Proof by induction
- Base case, n = 2
- Suppose Huffman algorithm is correct for n symbols
- Consider an n+1 symbol alphabet . . .

Homework problems

Topological Sort Approach

- Run topological sort
 - Determine cycles
 - Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

 $T(n) \le 2T(n/2) + cn; T(1) \le c;$

Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Unroll recurrence for T(n) = 3T(n/3) + dn

What is the recurrence?

Recurrence Examples

- T(n) = 2 T(n/2) + cn
 O(n log n)
- T(n) = T(n/2) + cn
 O(n)
- More useful facts:
 log_kn = log₂n / log₂k
 k ^{log n} = n ^{log k}

$$T(n) = aT(n/b) + f(n)$$

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

Recurrence:

Recurrences

- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - $-\operatorname{All}$ cases equal we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)
 The bottom level wins
- Geometrically decreasing (x < 1)

 The top level wins
- Balanced (x = 1)

Ν

- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

Strassen's Algorithm

Aultiply 2 x 2 Motricoo:	
Multiply 2 x 2 Matrices: r s _ a b e g t u c d f h	Where:
	$p_1 = (b + d)(f + g)$
	$p_2 = (c + d)e$
	p ₃ = a(g – h)
$r = p_1 + p_4 - p_5 + p_7$	$p_4 = d(f - e)$
$s = p_3 + p_5$	p₅= (a – b)h
$t = p_2 + p_5$	$p_6 = (c - d)(e + g)$
$u = p_1 + p_3 - p_2 + p_7$	$p_7 = (b - d)(f + h)$

Recurrence for Strassen's Algorithms

- T(n) = 7 T(n/2) + cn²
- What is the runtime?