CSEP 521
Applied Algorithms
Richard Anderson
Winter 2013
Lecture 4

Announcements

- Reading
- For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Interval Scheduling

Highlights from last lecture

- Greedy Algorithms
- Dijkstra's Algorithm

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm
Label the edges in order of insertion

Greedy Algorithm 1
 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Construct the MST
with Prim's
algorithm starting from vertex a
Label the edges in
order of insertion

Greedy Algorithm 3

 Reverse-Delete Algorithm- Delete the most expensive edge that does not disconnect the graph

Construct the MST
with the reversedelete algorithm
Label the edges in
order of removal

Edge inclusion lemma

- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G - Or equivalently, if e is not in T , then T is not a minimum spanning tree

e is the minimum cost edge

 between S and V-S
Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $\mathrm{e}_{1}=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $T_{1}=T-\left\{e_{1}\right\}+\{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V -S for some set S.

Prim's Algorithm

$S=\{ \} ; T=\{ \} ;$
while $S!=V$
choose the minimum cost edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$, with u in S , and v in V-S
add e to T
add v to S

Dijkstra's Algorithm

 for Minimum Spanning Trees$\mathrm{S}=\{ \} ; \quad \mathrm{d}[\mathrm{s}]=0 ; \quad \mathrm{d}[\mathrm{v}]=$ infinity for $\mathrm{v}!=\mathrm{s}$
While S ! $=\mathrm{V}$
Choose v in $\mathrm{V}-\mathrm{S}$ with minimum d[v]
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], c(v, w))$

Kruskal's Algorithm

Let $C=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; T=\{ \}$
while $|C|>1$
Let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ with u in C_{i} and v in C_{i} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{i} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{i}}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges

Application: Clustering

- Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\min \left\{\operatorname{dist}(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}\right.$ in $\mathrm{S}_{1}, \mathrm{y}$ in $\left.\mathrm{S}_{2}\right\}$

Divide into 2 clusters

Distance Clustering Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{\mathrm{n}}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|\mathrm{C}|>K$
Let $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ with u in C_{i} and v in C_{i} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

Huffman Codes

- Given a set of symbols of known frequency, encode in binary to minimize the average length of a message
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{f}(\mathrm{a})=.4, \mathrm{f}(\mathrm{b})=.3, \mathrm{f}(\mathrm{c})=.2, \mathrm{f}(\mathrm{d})=.1$

Prefix codes

- A code is a prefix code, if there is no pair of code words X and Y , where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree

Optimal prefix code

- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- ABL(Code): Average Bits per Letter

Huffman Algorithm

- Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done

Properties of optimal codes

- The tree for an optimal code is full
- If $f(x) \leq f(y)$ then depth $(x) \geq \operatorname{depth}(y)$
- The two nodes of lowest frequency are at the same level
- There is an optimal code where the two lowest frequency words are siblings

Correctness proof (sketch)

- Let y, z be the lowest frequency letters that are replaced by a letter w
- Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w
$-\operatorname{ABL}\left(T^{\prime}\right)=A B L(T)-f(w)$

Correctness proof (sketch)

- Proof by induction
- Base case, $\mathrm{n}=2$
- Suppose Huffman algorithm is correct for n symbols
- Consider an $\mathrm{n}+1$ symbol alphabet . . .

Homework problems

Exercise 8, Page 109

Prove that for any c, there is a graph G such that $\operatorname{Diag}(G) \geq c \operatorname{APD}(G)$

Exercise 12, Page 112

- Given info of the form P_{i} died before P_{j} born and P_{i} and P_{j} overlapped, determine if the data is internally consistent

Programming Problem

Topological Sort Approach

- Run topological sort
- Determine cycles
- Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight

Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
- Until a labeled vertex is reached
- Until a new cycle is discovered
- Follow chain of vertices a second time to set labels

void MarkCycle(int v , return;
int $y=v$;
int $x_{\text {; }}$
do $\{$

The code...

 CycleStructure cyclesbool[] mark. sbyte[] cycle) \{ if ($\operatorname{mark}[\mathrm{r}]==$ true)
$y=1$
mark $[x]=$ true;
while (mark[y] == false);

```
int cycleld;
    int cyclelD;
    cyclelD = cycles.AddCycle()
        for(int a = y;a!=x;a=next[a]){
        cycle[a] = (sbyte) cyclelD;
        cycles.AddCycleVertex(cycleID);
        }
        l}\begin{array}{l}{\mathrm{ cycle[x] =(sbyte) cycleID;}}\\{\mathrm{ cycles.AddCycleVertex(cycleID);}}
    }
    else
    for (int a=v; cycle[a] == -1;a=next[a]) {
    cycle[a] = (sbyte) cyclelD;
    cyles.AddBranchVertex(cycleID);
```

\} ${ }^{\}}$

How many cycles?

Results from Random Graphs

What is the length of the longest cycle?

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)
- FFT (5.6)

Divide and Conquer

```
Array Mergesort(Array a){
\(\mathrm{n}=\mathrm{a}\).Length;
if ( \(n<=1\) )
return a;
\(b=\) Mergesort(a[0 .. \(n / 2]\) );
\(\mathrm{c}=\) Mergesort(a[n/2+1 .. \(\mathrm{n}-1])\);
return Merge(b, c);
\}
```


Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$$
T(n)<=2 T(n / 2)+c n ; T(1)<=c
$$

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Induction Hypothesis:

Substitution

Prove $\mathrm{T}(\mathrm{n})<=\mathrm{cn}\left(\log _{2} \mathrm{n}+1\right)$ for $\mathrm{n}>=1$
Induction:
Base Case:
\qquad

Recurrence Examples

- $T(n)=2 T(n / 2)+c n$
$-O(n \log n)$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{cn}$
- O(n)
- More useful facts:
$-\log _{k} n=\log _{2} n / \log _{2} k$
$-k^{\log n}=n^{\log k}$

$$
\mathrm{T}(\mathrm{n})=\mathrm{a} T(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})
$$

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
$|r \quad s| a \operatorname{b|c}$
$\left|\begin{array}{ll}\mathrm{r} & \mathrm{s}\end{array}\right|=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} \mid & \mid \mathrm{e} \\ \mathrm{g}\end{array}\right|$
$\left.|t \quad u|=\left|\begin{array}{ll}\mathrm{c} & \mathrm{d} \mid\end{array}\right| \mathrm{f} \quad \mathrm{h} \right\rvert\,$
$r=a e+b f$
$s=a g+b h$
$t=c e+d f$
$\mathrm{u}=\mathrm{cg}+\mathrm{dh}$
A N x N matrix can be viewed as a 2×2 matrix with entries that are (N/2) $\times(\mathrm{N} / 2)$ matrices.
The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and
combines them using the equations for multiplying 2×2 matrices

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

How much work in combining the results?

- What is the recurrence?

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($\mathrm{x}<1$)
- The top level wins
- Balanced ($x=1$)
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}^{3}+7 \mathrm{~T}(\mathrm{n} / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

Strassen's Algorithm

> Multiply 2×2 Matrices:
> $\begin{array}{ll}\mid r & s \\ \mid t & u\end{array}|=| \begin{array}{llll}a & b \mid & \mid e & g \mid \\ \mid c & d & \mid f & h \mid\end{array}$
> Where:
> $p_{1}=(b+d)(f+g)$
> $p_{2}=(c+d) e$
> $p_{3}=a(g-h)$
> $r=p_{1}+p_{4}-p_{5}+p_{7}$
> $\mathrm{p}_{4}=\mathrm{d}(\mathrm{f}-\mathrm{e})$
> $p_{5}=(a-b) h$
> $s=p_{3}+p_{5}$
> $\mathrm{t}=\mathrm{p}_{2}+\mathrm{p}_{5}$
> $\mathrm{u}=\mathrm{p}_{1}+\mathrm{p}_{3}-\mathrm{p}_{2}+\mathrm{p}_{7}$
> $p_{6}=(c-d)(e+g)$
> $p_{7}=(b-d)(f+h)$

Recurrence for Strassen's

Algorithms

- $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$
- What is the runtime?

