CSEP 521 Applied Algorithms

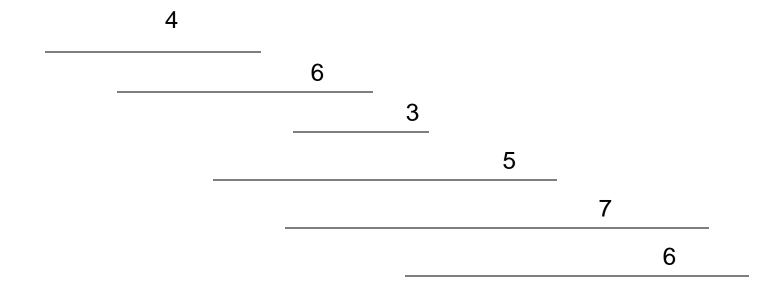
Richard Anderson
Lecture 6
Dynamic Programming

Announcements

- Midterm today!
 - 60 minutes, start of class, closed book
- Reading for this week
 - -6.1, 6.2, 6.3, 6.4
- Makeup lecture
 - February 19, 6:30 pm.
 - Still waiting on confirmation on MS room.

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I₁,...,I_n with weights w₁,...,w_n, choose a maximum weight set of non-overlapping intervals



Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . . , I_i
- Opt[j] = max(Opt[j 1], w_j + Opt[p[j]])
 - Where p[j] is the index of the last interval which finishes before I_i starts

Algorithm

```
MaxValue(j) =

if j = 0 return 0

else

return max( MaxValue(j-1),

w<sub>j</sub> + MaxValue(p[ j ]))
```

Worst case run time: 2ⁿ

A better algorithm

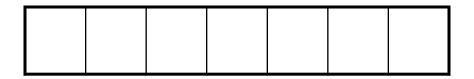
M[j] initialized to -1 before the first recursive call for all j MaxValue(j) = if j = 0 return 0; else if M[j]!= -1 return M[j]; else $M[j] = max(MaxValue(j-1), w_i + MaxValue(p[j]));$ return M[j];

Iterative version

```
MaxValue (j) { M[ 0 ] = 0; for (k = 1; k <= j; k++){ M[ k ] = max(M[ k-1 ], w_k + M[ P[ k ] ]); return M[ j ]; }
```

Fill in the array with the Opt values

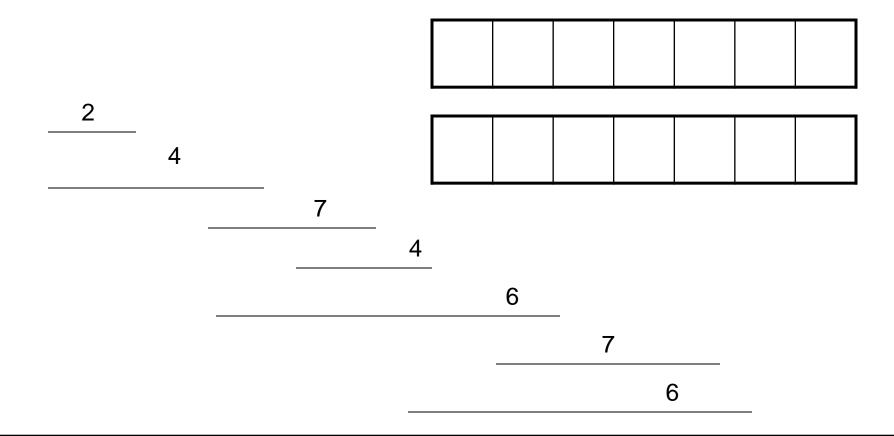
Opt[j] = max (Opt[j - 1], w_j + Opt[p[j])



2 4 7 4 6

Computing the solution

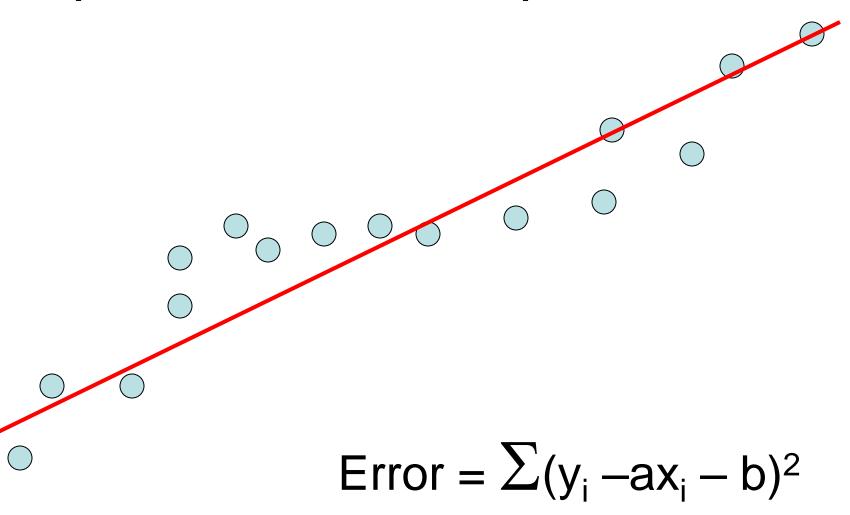
Opt[j] = max (Opt[j – 1], w_j + Opt[p[j]) Record which case is used in Opt computation



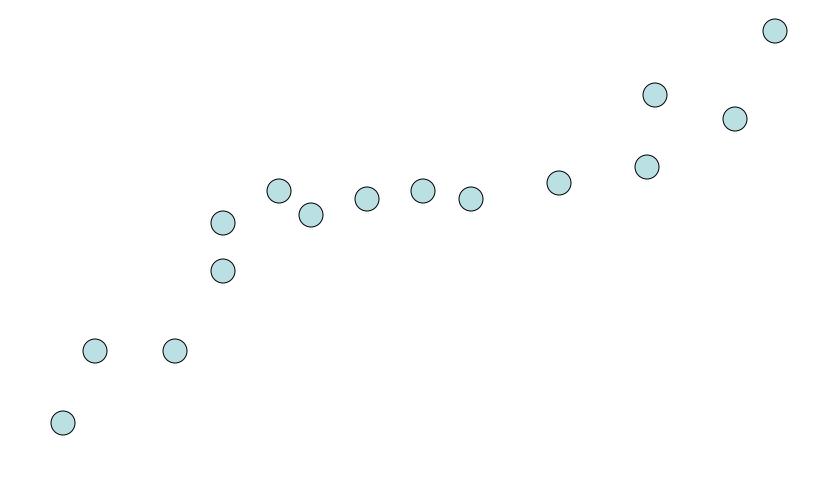
Dynamic Programming

- The most important algorithmic technique covered in CSEP 521
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

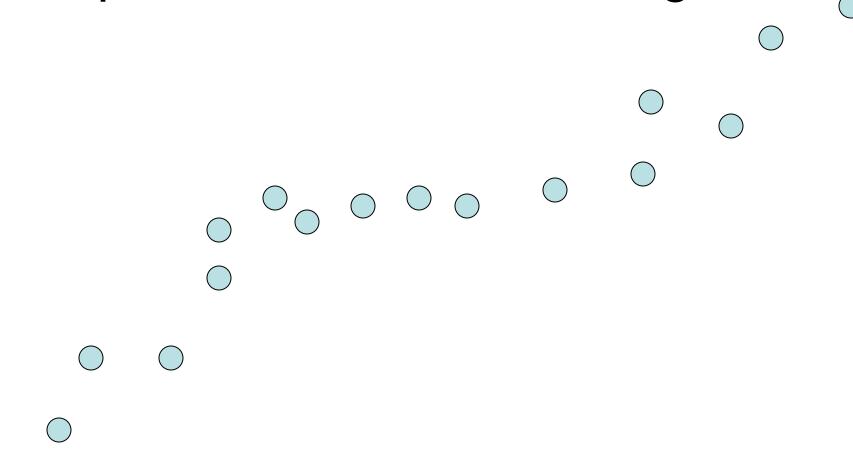
Optimal linear interpolation



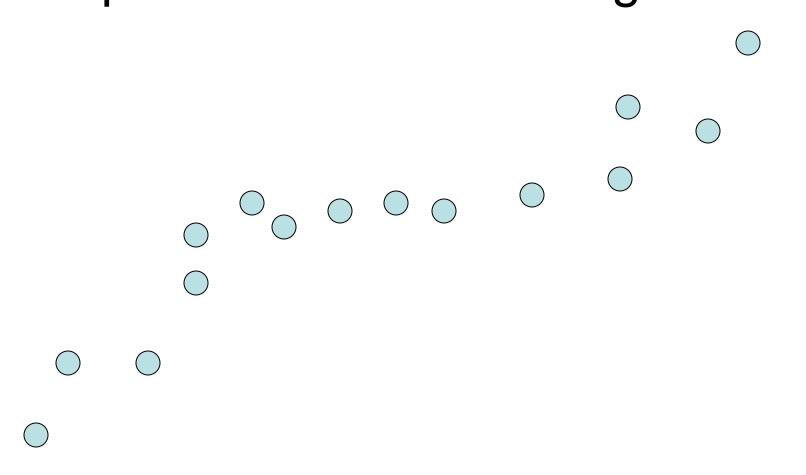
What is the optimal linear interpolation with three line segments



What is the optimal linear interpolation with two line segments

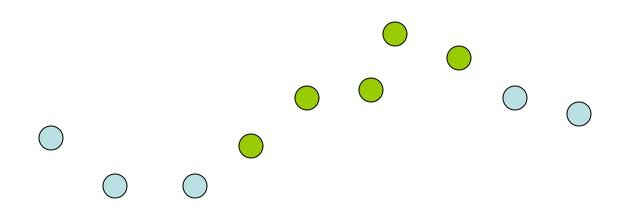


What is the optimal linear interpolation with n line segments



Notation

- Points p₁, p₂, . . ., p_n ordered by x-coordinate (p_i = (x_i, y_i))
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i , . . . p_i



Optimal interpolation with two segments

 Give an equation for the optimal interpolation of p₁,...,p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$

Optimal interpolation with k segments

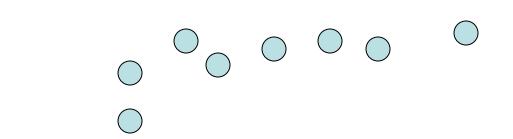
- Optimal segmentation with three segments
 - $Min_{i,i} \{ E_{1,i} + E_{i,j} + E_{j,n} \}$
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

Opt_k[j]: Minimum error approximating p₁...p_j with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem



Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

```
for j := 1 to n

Opt[ 1, j] = E_{1,j};

for k := 2 to n-1

for j := 2 to n

t := E_{1,j}

for i := 1 to j - 1

t = min(t, Opt[k-1, i] + E_{i,j})

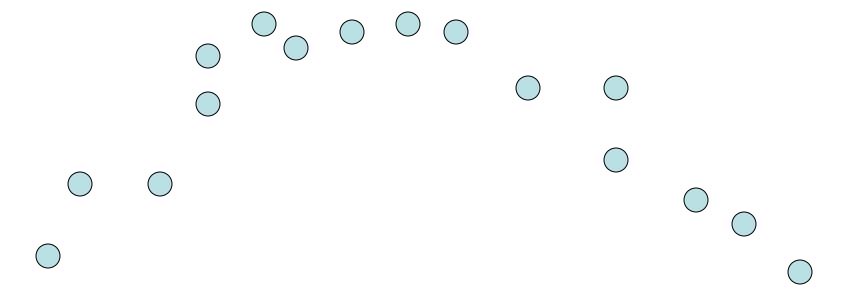
Opt[k, j] = t
```

Determining the solution

- When Opt[k,j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments



Penalty cost measure

• Opt[j] = $min(E_{1,j}, min_i(Opt[i] + E_{i,j} + P))$

Subset Sum Problem

- Let $w_1, ..., w_n = \{6, 8, 9, 11, 13, 16, 18, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50

Adding a variable for Weight

- Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K
- {2, 4, 7, 10}
 - Opt[2, 7] =
 - Opt[3, 7] =
 - Opt[3,12] =
 - Opt[4,12] =

Subset Sum Recurrence

 Opt[j, K] the largest subset of {w₁, ..., w_j} that sums to at most K

Subset Sum Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_j] + w_j)

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

{2, 4, 7, 10}

Subset Sum Code

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items {I₁, I₂, ... I_n}
 - Weights $\{w_1, w_2, ..., w_n\}$
 - Values {v₁, v₂, ..., v_n}
 - Bound K
- Find set S of indices to:
 - Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i <= K$

Knapsack Recurrence

Subset Sum Recurrence:

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K -
$$w_j$$
] + w_j)

Knapsack Recurrence:

Knapsack Grid

Opt[j, K] = max(Opt[j - 1, K], Opt[j - 1, K - w_i] + v_i)

4																	
3																	
2																	
1																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}

Dynamic Programming Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 - $-b_i = (p_i, v_i), v_i$: value of placing billboard at position p_i
- Constraint:
 - At most one billboard every five miles
- Example
 - $-\{(6,5), (8,6), (12,5), (14,1)\}$

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Opt[k] = fun(Opt[0],...,Opt[k-1])

 How is the solution determined from sub problems?

Solution

```
j=0; \qquad /\!\!/ j \text{ is five miles behind the current position} \\ /\!\!/ the last valid location for a billboard, if one placed at P[k] \\ for k:=1 to n \\ \text{while } (P[j] < P[k] - 5) \\ j:=j+1; \\ j:=j-1; \\ \text{Opt}[k] = \text{Max}(\text{Opt}[k-1], V[k] + \text{Opt}[j]); \\ \end{cases}
```

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

 Pen(i, j) – penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

- Key technical idea
 - Number the breaks between words/syllables

String approximation

Given a string S, and a library of strings B
 = {b₁, ...b_m}, construct an approximation of
 the string S by using copies of strings in B.

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

```
Target string S = s_1 s_2 ... s_n
Library of strings B = \{b_1, ..., b_m\}
MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.
```

Opt[k] = fun(Opt[0],...,Opt[k-1])

 How is the solution determined from sub problems?

```
Target string S = s_1 s_2 ... s_n
Library of strings B = \{b_1, ..., b_m\}
MisMatch(i,j) = number of mismatched characters with b_j when aligned starting at position i of S.
```

Solution